#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Algorithms.DataAnalysis;
using HeuristicLab.MainForm;
using HeuristicLab.Problems.DataAnalysis.Views.Classification;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification.Views {
[View("Solution Comparison")]
[Content(typeof(ISymbolicClassificationSolution))]
public partial class SolutionComparisonView : ClassificationSolutionComparisonView {
public SolutionComparisonView() {
InitializeComponent();
}
public new ISymbolicClassificationSolution Content {
get { return (ISymbolicClassificationSolution)base.Content; }
set { base.Content = value; }
}
protected override IEnumerable GenerateClassificationSolutions() {
var solutionsBase = base.GenerateClassificationSolutions();
var solutions = new List();
var symbolicSolution = Content;
// does not support lagged variables
if (symbolicSolution.Model.SymbolicExpressionTree.IterateNodesPrefix().OfType().Any()) return solutionsBase;
var problemData = (IClassificationProblemData)symbolicSolution.ProblemData.Clone();
if (!problemData.TrainingIndices.Any()) return null; // don't create an comparison models if the problem does not have a training set (e.g. loaded into an existing model)
var usedVariables = Content.Model.SymbolicExpressionTree.IterateNodesPostfix()
.OfType()
.Select(node => node.VariableName).ToArray();
var usedDoubleVariables = usedVariables
.Where(name => problemData.Dataset.VariableHasType(name))
.Distinct();
var usedFactorVariables = usedVariables
.Where(name => problemData.Dataset.VariableHasType(name))
.Distinct();
// gkronber: for binary factors we actually produce a binary variable in the new dataset
// but only if the variable is not used as a full factor anyway (LR creates binary columns anyway)
var usedBinaryFactors =
Content.Model.SymbolicExpressionTree.IterateNodesPostfix().OfType()
.Where(node => !usedFactorVariables.Contains(node.VariableName))
.Select(node => Tuple.Create(node.VariableValue, node.VariableValue));
// create a new problem and dataset
var variableNames =
usedDoubleVariables
.Concat(usedFactorVariables)
.Concat(usedBinaryFactors.Select(t => t.Item1 + "=" + t.Item2))
.Concat(new string[] { problemData.TargetVariable })
.ToArray();
var variableValues =
usedDoubleVariables.Select(name => (IList)problemData.Dataset.GetDoubleValues(name).ToList())
.Concat(usedFactorVariables.Select(name => problemData.Dataset.GetStringValues(name).ToList()))
.Concat(
// create binary variable
usedBinaryFactors.Select(t => problemData.Dataset.GetReadOnlyStringValues(t.Item1).Select(val => val == t.Item2 ? 1.0 : 0.0).ToList())
)
.Concat(new[] { problemData.Dataset.GetDoubleValues(problemData.TargetVariable).ToList() });
var newDs = new Dataset(variableNames, variableValues);
var newProblemData = new ClassificationProblemData(newDs, variableNames.Take(variableNames.Length - 1), variableNames.Last());
newProblemData.TrainingPartition.Start = problemData.TrainingPartition.Start;
newProblemData.TrainingPartition.End = problemData.TrainingPartition.End;
newProblemData.TestPartition.Start = problemData.TestPartition.Start;
newProblemData.TestPartition.End = problemData.TestPartition.End;
try {
var oneR = OneR.CreateOneRSolution(newProblemData);
oneR.Name = "OneR Classification Solution (subset)";
solutions.Add(oneR);
} catch (NotSupportedException) { } catch (ArgumentException) { }
try {
var lda = LinearDiscriminantAnalysis.CreateLinearDiscriminantAnalysisSolution(newProblemData);
lda.Name = "Linear Discriminant Analysis Solution (subset)";
solutions.Add(lda);
} catch (NotSupportedException) { } catch (ArgumentException) { }
return solutionsBase.Concat(solutions);
}
}
}