#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Optimization; using HeuristicLab.Persistence; namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding { [StorableType("229745ce-05d8-4136-8d22-89f72f66b5f9")] public abstract class SymbolicExpressionTreeProblem : SingleObjectiveBasicProblem { // persistence [StorableConstructor] protected SymbolicExpressionTreeProblem(StorableConstructorFlag deserializing) : base(deserializing) { } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { } // cloning protected SymbolicExpressionTreeProblem(SymbolicExpressionTreeProblem original, Cloner cloner) : base(original, cloner) { } protected SymbolicExpressionTreeProblem() : base() { } public virtual bool IsBetter(double quality, double bestQuality) { return (Maximization && quality > bestQuality || !Maximization && quality < bestQuality); } public abstract double Evaluate(ISymbolicExpressionTree tree, IRandom random); public sealed override double Evaluate(Individual individual, IRandom random) { return Evaluate(individual.SymbolicExpressionTree(), random); } public virtual void Analyze(ISymbolicExpressionTree[] trees, double[] qualities, ResultCollection results, IRandom random) { if (!results.ContainsKey("Best Solution Quality")) { results.Add(new Result("Best Solution Quality", typeof(DoubleValue))); } if (!results.ContainsKey("Best Solution")) { results.Add(new Result("Best Solution", typeof(ISymbolicExpressionTree))); } var bestQuality = Maximization ? qualities.Max() : qualities.Min(); if (results["Best Solution Quality"].Value == null || IsBetter(bestQuality, ((DoubleValue)results["Best Solution Quality"].Value).Value)) { var bestIdx = Array.IndexOf(qualities, bestQuality); var bestClone = (IItem)trees[bestIdx].Clone(); results["Best Solution"].Value = bestClone; results["Best Solution Quality"].Value = new DoubleValue(bestQuality); } } public sealed override void Analyze(Individual[] individuals, double[] qualities, ResultCollection results, IRandom random) { Analyze(individuals.Select(ind => ind.SymbolicExpressionTree()).ToArray(), qualities, results, random); } } }