#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.RealVectorEncoding; using HeuristicLab.Operators; using HeuristicLab.Parameters; using HeuristicLab.Persistence; namespace HeuristicLab.Algorithms.GradientDescent { [StorableType("14a52a16-6eb7-4c01-9d44-2c44a46ba5a5")] [Item(Name = "LBFGS UpdateResults", Description = "Sets the results (function value and gradients) for the next optimization step in the LM-BFGS algorithm.")] public sealed class LbfgsUpdateResults : SingleSuccessorOperator { private const string QualityGradientsParameterName = "QualityGradients"; private const string QualityParameterName = "Quality"; private const string StateParameterName = "State"; private const string ApproximateGradientsParameterName = "ApproximateGradients"; private const string MaximizationParameterName = "Maximization"; #region Parameter Properties public ILookupParameter ApproximateGradientsParameter { get { return (ILookupParameter)Parameters[ApproximateGradientsParameterName]; } } public ILookupParameter QualityGradientsParameter { get { return (ILookupParameter)Parameters[QualityGradientsParameterName]; } } public ILookupParameter QualityParameter { get { return (ILookupParameter)Parameters[QualityParameterName]; } } public ILookupParameter StateParameter { get { return (ILookupParameter)Parameters[StateParameterName]; } } public ILookupParameter MaximizationParameter { get { return (ILookupParameter)Parameters[MaximizationParameterName]; } } #endregion #region Properties private BoolValue ApproximateGradients { get { return ApproximateGradientsParameter.ActualValue; } } private RealVector QualityGradients { get { return QualityGradientsParameter.ActualValue; } } private DoubleValue Quality { get { return QualityParameter.ActualValue; } } private LbfgsState State { get { return StateParameter.ActualValue; } } private BoolValue Maximization { get { // BackwardsCompatibility3.3 #region Backwards compatible code, remove with 3.4 // the parameter is new, previously we assumed minimization problems if (MaximizationParameter.ActualValue == null) return new BoolValue(false); #endregion return MaximizationParameter.ActualValue; } } #endregion [StorableConstructor] private LbfgsUpdateResults(StorableConstructorFlag deserializing) : base(deserializing) { } private LbfgsUpdateResults(LbfgsUpdateResults original, Cloner cloner) : base(original, cloner) { } public LbfgsUpdateResults() : base() { // in Parameters.Add(new LookupParameter(QualityGradientsParameterName, "The gradients at the evaluated point of the function to optimize.")); Parameters.Add(new LookupParameter(QualityParameterName, "The value at the evaluated point of the function to optimize.")); Parameters.Add(new LookupParameter(ApproximateGradientsParameterName, "Flag that indicates if gradients should be approximated.")); Parameters.Add(new LookupParameter(MaximizationParameterName, "Flag that indicates if we solve a maximization problem.")); // in & out Parameters.Add(new LookupParameter(StateParameterName, "The state of the LM-BFGS algorithm.")); } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { // BackwardsCompatibility3.3 #region Backwards compatible code, remove with 3.4 if (!Parameters.ContainsKey(MaximizationParameterName)) { // previous behaviour defaulted to minimization Parameters.Add(new LookupParameter(MaximizationParameterName, "Flag that indicates if we solve a maximization problem.")); } #endregion } public override IDeepCloneable Clone(Cloner cloner) { return new LbfgsUpdateResults(this, cloner); } public override IOperation Apply() { var state = State; var sign = Maximization.Value ? -1.0 : 1.0; var f = sign * Quality.Value; state.State.f = f; if (!ApproximateGradients.Value) { var g = QualityGradients.Select(gi => sign * gi).ToArray(); state.State.g = g; } return base.Apply(); } } }