#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Operators; using HeuristicLab.Optimization; using HeuristicLab.Optimization.Operators; using HeuristicLab.Parameters; using HeuristicLab.Persistence; using HeuristicLab.Selection; namespace HeuristicLab.Algorithms.GeneticAlgorithm { /// /// An island genetic algorithm main loop operator. /// [Item("IslandGeneticAlgorithmMainLoop", "An island genetic algorithm main loop operator.")] [StorableType("f2687b26-6050-473a-b1ce-5e110fa27923")] public sealed class IslandGeneticAlgorithmMainLoop : AlgorithmOperator { #region Parameter Properties public ValueLookupParameter RandomParameter { get { return (ValueLookupParameter)Parameters["Random"]; } } public ValueLookupParameter MaximizationParameter { get { return (ValueLookupParameter)Parameters["Maximization"]; } } public ScopeTreeLookupParameter QualityParameter { get { return (ScopeTreeLookupParameter)Parameters["Quality"]; } } public ValueLookupParameter BestKnownQualityParameter { get { return (ValueLookupParameter)Parameters["BestKnownQuality"]; } } public ValueLookupParameter NumberOfIslandsParameter { get { return (ValueLookupParameter)Parameters["NumberOfIslands"]; } } public ValueLookupParameter MigrationIntervalParameter { get { return (ValueLookupParameter)Parameters["MigrationInterval"]; } } public ValueLookupParameter MigrationRateParameter { get { return (ValueLookupParameter)Parameters["MigrationRate"]; } } public ValueLookupParameter MigratorParameter { get { return (ValueLookupParameter)Parameters["Migrator"]; } } public ValueLookupParameter EmigrantsSelectorParameter { get { return (ValueLookupParameter)Parameters["EmigrantsSelector"]; } } public ValueLookupParameter ImmigrationReplacerParameter { get { return (ValueLookupParameter)Parameters["ImmigrationReplacer"]; } } public ValueLookupParameter PopulationSizeParameter { get { return (ValueLookupParameter)Parameters["PopulationSize"]; } } public ValueLookupParameter MaximumGenerationsParameter { get { return (ValueLookupParameter)Parameters["MaximumGenerations"]; } } public ValueLookupParameter SelectorParameter { get { return (ValueLookupParameter)Parameters["Selector"]; } } public ValueLookupParameter CrossoverParameter { get { return (ValueLookupParameter)Parameters["Crossover"]; } } public ValueLookupParameter MutationProbabilityParameter { get { return (ValueLookupParameter)Parameters["MutationProbability"]; } } public ValueLookupParameter MutatorParameter { get { return (ValueLookupParameter)Parameters["Mutator"]; } } public ValueLookupParameter EvaluatorParameter { get { return (ValueLookupParameter)Parameters["Evaluator"]; } } public ValueLookupParameter ElitesParameter { get { return (ValueLookupParameter)Parameters["Elites"]; } } public IValueLookupParameter ReevaluateElitesParameter { get { return (IValueLookupParameter)Parameters["ReevaluateElites"]; } } public ValueLookupParameter ResultsParameter { get { return (ValueLookupParameter)Parameters["Results"]; } } public ValueLookupParameter AnalyzerParameter { get { return (ValueLookupParameter)Parameters["Analyzer"]; } } public ValueLookupParameter IslandAnalyzerParameter { get { return (ValueLookupParameter)Parameters["IslandAnalyzer"]; } } public LookupParameter EvaluatedSolutionsParameter { get { return (LookupParameter)Parameters["EvaluatedSolutions"]; } } public LookupParameter IslandGenerations { get { return (LookupParameter)Parameters["IslandGenerations"]; } } public LookupParameter IslandEvaluatedSolutions { get { return (LookupParameter)Parameters["IslandEvaluatedSolutions"]; } } public ValueLookupParameter Migrate { get { return (ValueLookupParameter)Parameters["Migrate"]; } } #endregion [StorableConstructor] private IslandGeneticAlgorithmMainLoop(StorableConstructorFlag deserializing) : base(deserializing) { } private IslandGeneticAlgorithmMainLoop(IslandGeneticAlgorithmMainLoop original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new IslandGeneticAlgorithmMainLoop(this, cloner); } public IslandGeneticAlgorithmMainLoop() : base() { #region Create parameters Parameters.Add(new ValueLookupParameter("Random", "A pseudo random number generator.")); Parameters.Add(new ValueLookupParameter("Maximization", "True if the problem is a maximization problem, otherwise false.")); Parameters.Add(new ScopeTreeLookupParameter("Quality", "The value which represents the quality of a solution.")); Parameters.Add(new ValueLookupParameter("BestKnownQuality", "The best known quality value found so far.")); Parameters.Add(new ValueLookupParameter("NumberOfIslands", "The number of islands.")); Parameters.Add(new ValueLookupParameter("MigrationInterval", "The number of generations that should pass between migration phases.")); Parameters.Add(new ValueLookupParameter("MigrationRate", "The proportion of individuals that should migrate between the islands.")); Parameters.Add(new ValueLookupParameter("Migrator", "The migration strategy.")); Parameters.Add(new ValueLookupParameter("EmigrantsSelector", "Selects the individuals that will be migrated.")); Parameters.Add(new ValueLookupParameter("ImmigrationReplacer", "Replaces some of the original population with the immigrants.")); Parameters.Add(new ValueLookupParameter("PopulationSize", "The size of the population of solutions.")); Parameters.Add(new ValueLookupParameter("MaximumGenerations", "The maximum number of generations that the algorithm should process.")); Parameters.Add(new ValueLookupParameter("Selector", "The operator used to select solutions for reproduction.")); Parameters.Add(new ValueLookupParameter("Crossover", "The operator used to cross solutions.")); Parameters.Add(new ValueLookupParameter("MutationProbability", "The probability that the mutation operator is applied on a solution.")); Parameters.Add(new ValueLookupParameter("Mutator", "The operator used to mutate solutions.")); Parameters.Add(new ValueLookupParameter("Evaluator", "The operator used to evaluate solutions.")); Parameters.Add(new ValueLookupParameter("Elites", "The numer of elite solutions which are kept in each generation.")); Parameters.Add(new ValueLookupParameter("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)")); Parameters.Add(new ValueLookupParameter("Results", "The results collection to store the results.")); Parameters.Add(new ValueLookupParameter("Analyzer", "The operator used to the analyze the islands.")); Parameters.Add(new ValueLookupParameter("IslandAnalyzer", "The operator used to analyze each island.")); Parameters.Add(new LookupParameter("EvaluatedSolutions", "The number of times a solution has been evaluated.")); Parameters.Add(new LookupParameter("IslandGenerations", "The number of generations calculated on one island.")); Parameters.Add(new LookupParameter("IslandEvaluatedSolutions", "The number of times a solution has been evaluated on one island.")); Parameters.Add(new ValueLookupParameter("Migrate", "Migrate the island?")); #endregion #region Create operators VariableCreator variableCreator = new VariableCreator(); UniformSubScopesProcessor uniformSubScopesProcessor0 = new UniformSubScopesProcessor(); VariableCreator islandVariableCreator = new VariableCreator(); Placeholder islandAnalyzer1 = new Placeholder(); LocalRandomCreator localRandomCreator = new LocalRandomCreator(); Placeholder analyzer1 = new Placeholder(); ResultsCollector resultsCollector1 = new ResultsCollector(); UniformSubScopesProcessor uniformSubScopesProcessor1 = new UniformSubScopesProcessor(); Assigner generationsAssigner = new Assigner(); Assigner evaluatedSolutionsAssigner = new Assigner(); Placeholder selector = new Placeholder(); SubScopesProcessor subScopesProcessor1 = new SubScopesProcessor(); ChildrenCreator childrenCreator = new ChildrenCreator(); UniformSubScopesProcessor uniformSubScopesProcessor2 = new UniformSubScopesProcessor(); Placeholder crossover = new Placeholder(); StochasticBranch stochasticBranch = new StochasticBranch(); Placeholder mutator = new Placeholder(); SubScopesRemover subScopesRemover = new SubScopesRemover(); UniformSubScopesProcessor uniformSubScopesProcessor3 = new UniformSubScopesProcessor(); Placeholder evaluator = new Placeholder(); SubScopesCounter subScopesCounter = new SubScopesCounter(); SubScopesProcessor subScopesProcessor2 = new SubScopesProcessor(); BestSelector bestSelector = new BestSelector(); RightReducer rightReducer = new RightReducer(); MergingReducer mergingReducer = new MergingReducer(); IntCounter islandGenerationsCounter = new IntCounter(); Comparator checkIslandGenerationsReachedMaximum = new Comparator(); ConditionalBranch checkContinueEvolution = new ConditionalBranch(); DataReducer generationsReducer = new DataReducer(); DataReducer evaluatedSolutionsReducer = new DataReducer(); Placeholder islandAnalyzer2 = new Placeholder(); UniformSubScopesProcessor uniformSubScopesProcessor5 = new UniformSubScopesProcessor(); Placeholder emigrantsSelector = new Placeholder(); IntCounter migrationsCounter = new IntCounter(); Placeholder migrator = new Placeholder(); UniformSubScopesProcessor uniformSubScopesProcessor6 = new UniformSubScopesProcessor(); Placeholder immigrationReplacer = new Placeholder(); Comparator generationsComparator = new Comparator(); Placeholder analyzer2 = new Placeholder(); ConditionalBranch generationsTerminationCondition = new ConditionalBranch(); ConditionalBranch reevaluateElitesBranch = new ConditionalBranch(); variableCreator.CollectedValues.Add(new ValueParameter("Migrations", new IntValue(0))); variableCreator.CollectedValues.Add(new ValueParameter("GenerationsSinceLastMigration", new IntValue(0))); variableCreator.CollectedValues.Add(new ValueParameter("Generations", new IntValue(0))); // Class IslandGeneticAlgorithm expects this to be called Generations islandVariableCreator.CollectedValues.Add(new ValueParameter("Results", new ResultCollection())); islandVariableCreator.CollectedValues.Add(new ValueParameter("IslandGenerations", new IntValue(0))); islandVariableCreator.CollectedValues.Add(new ValueParameter("IslandEvaluatedSolutions", new IntValue(0))); islandAnalyzer1.Name = "Island Analyzer (placeholder)"; islandAnalyzer1.OperatorParameter.ActualName = IslandAnalyzerParameter.Name; analyzer1.Name = "Analyzer (placeholder)"; analyzer1.OperatorParameter.ActualName = AnalyzerParameter.Name; resultsCollector1.CollectedValues.Add(new LookupParameter("Migrations")); resultsCollector1.CollectedValues.Add(new LookupParameter("Generations")); resultsCollector1.CollectedValues.Add(new ScopeTreeLookupParameter("IslandResults", "Result set for each island", "Results")); resultsCollector1.ResultsParameter.ActualName = ResultsParameter.Name; uniformSubScopesProcessor1.Parallel.Value = true; generationsAssigner.Name = "Initialize Island Generations"; generationsAssigner.LeftSideParameter.ActualName = IslandGenerations.Name; generationsAssigner.RightSideParameter.Value = new IntValue(0); evaluatedSolutionsAssigner.Name = "Initialize Island evaluated solutions"; evaluatedSolutionsAssigner.LeftSideParameter.ActualName = IslandEvaluatedSolutions.Name; evaluatedSolutionsAssigner.RightSideParameter.Value = new IntValue(0); selector.Name = "Selector (placeholder)"; selector.OperatorParameter.ActualName = SelectorParameter.Name; childrenCreator.ParentsPerChild = new IntValue(2); crossover.Name = "Crossover (placeholder)"; crossover.OperatorParameter.ActualName = CrossoverParameter.Name; stochasticBranch.ProbabilityParameter.ActualName = MutationProbabilityParameter.Name; //set it to the random number generator of the island stochasticBranch.RandomParameter.ActualName = "LocalRandom"; mutator.Name = "Mutator (placeholder)"; mutator.OperatorParameter.ActualName = MutatorParameter.Name; subScopesRemover.RemoveAllSubScopes = true; evaluator.Name = "Evaluator (placeholder)"; evaluator.OperatorParameter.ActualName = EvaluatorParameter.Name; subScopesCounter.Name = "Increment EvaluatedSolutions"; subScopesCounter.ValueParameter.ActualName = IslandEvaluatedSolutions.Name; bestSelector.CopySelected = new BoolValue(false); bestSelector.MaximizationParameter.ActualName = MaximizationParameter.Name; bestSelector.NumberOfSelectedSubScopesParameter.ActualName = ElitesParameter.Name; bestSelector.QualityParameter.ActualName = QualityParameter.Name; islandGenerationsCounter.Name = "Increment island generatrions"; islandGenerationsCounter.ValueParameter.ActualName = IslandGenerations.Name; islandGenerationsCounter.Increment = new IntValue(1); checkIslandGenerationsReachedMaximum.LeftSideParameter.ActualName = IslandGenerations.Name; checkIslandGenerationsReachedMaximum.RightSideParameter.ActualName = MigrationIntervalParameter.Name; checkIslandGenerationsReachedMaximum.Comparison = new Comparison(ComparisonType.GreaterOrEqual); checkIslandGenerationsReachedMaximum.ResultParameter.ActualName = Migrate.Name; checkContinueEvolution.Name = "Migrate?"; checkContinueEvolution.ConditionParameter.ActualName = Migrate.Name; checkContinueEvolution.FalseBranch = selector; islandAnalyzer2.Name = "Island Analyzer (placeholder)"; islandAnalyzer2.OperatorParameter.ActualName = IslandAnalyzerParameter.Name; generationsReducer.Name = "Increment Generations"; generationsReducer.ParameterToReduce.ActualName = islandGenerationsCounter.ValueParameter.ActualName; generationsReducer.TargetParameter.ActualName = "Generations"; generationsReducer.ReductionOperation.Value = new ReductionOperation(ReductionOperations.Min); generationsReducer.TargetOperation.Value = new ReductionOperation(ReductionOperations.Sum); evaluatedSolutionsReducer.Name = "Increment Evaluated Solutions"; evaluatedSolutionsReducer.ParameterToReduce.ActualName = IslandEvaluatedSolutions.Name; evaluatedSolutionsReducer.TargetParameter.ActualName = EvaluatedSolutionsParameter.Name; evaluatedSolutionsReducer.ReductionOperation.Value = new ReductionOperation(ReductionOperations.Sum); evaluatedSolutionsReducer.TargetOperation.Value = new ReductionOperation(ReductionOperations.Sum); emigrantsSelector.Name = "Emigrants Selector (placeholder)"; emigrantsSelector.OperatorParameter.ActualName = EmigrantsSelectorParameter.Name; migrationsCounter.Name = "Increment number of Migrations"; migrationsCounter.ValueParameter.ActualName = "Migrations"; migrationsCounter.Increment = new IntValue(1); migrator.Name = "Migrator (placeholder)"; migrator.OperatorParameter.ActualName = MigratorParameter.Name; immigrationReplacer.Name = "Immigration Replacer (placeholder)"; immigrationReplacer.OperatorParameter.ActualName = ImmigrationReplacerParameter.Name; generationsComparator.Name = "Generations >= MaximumGenerations ?"; generationsComparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual); generationsComparator.LeftSideParameter.ActualName = "Generations"; generationsComparator.ResultParameter.ActualName = "TerminateGenerations"; generationsComparator.RightSideParameter.ActualName = MaximumGenerationsParameter.Name; analyzer2.Name = "Analyzer (placeholder)"; analyzer2.OperatorParameter.ActualName = AnalyzerParameter.Name; generationsTerminationCondition.Name = "Terminate?"; generationsTerminationCondition.ConditionParameter.ActualName = "TerminateGenerations"; reevaluateElitesBranch.ConditionParameter.ActualName = "ReevaluateElites"; reevaluateElitesBranch.Name = "Reevaluate elites ?"; #endregion #region Create operator graph OperatorGraph.InitialOperator = variableCreator; variableCreator.Successor = uniformSubScopesProcessor0; uniformSubScopesProcessor0.Operator = islandVariableCreator; uniformSubScopesProcessor0.Successor = analyzer1; islandVariableCreator.Successor = islandAnalyzer1; // BackwardsCompatibility3.3 //the local randoms are created by the island GA itself and are only here to ensure same algorithm results #region Backwards compatible code, remove local random creator with 3.4 and rewire the operator graph islandAnalyzer1.Successor = localRandomCreator; localRandomCreator.Successor = null; #endregion analyzer1.Successor = resultsCollector1; resultsCollector1.Successor = uniformSubScopesProcessor1; uniformSubScopesProcessor1.Operator = generationsAssigner; uniformSubScopesProcessor1.Successor = generationsReducer; generationsReducer.Successor = evaluatedSolutionsReducer; evaluatedSolutionsReducer.Successor = migrationsCounter; migrationsCounter.Successor = uniformSubScopesProcessor5; generationsAssigner.Successor = evaluatedSolutionsAssigner; evaluatedSolutionsAssigner.Successor = selector; selector.Successor = subScopesProcessor1; subScopesProcessor1.Operators.Add(new EmptyOperator()); subScopesProcessor1.Operators.Add(childrenCreator); subScopesProcessor1.Successor = subScopesProcessor2; childrenCreator.Successor = uniformSubScopesProcessor2; uniformSubScopesProcessor2.Operator = crossover; uniformSubScopesProcessor2.Successor = uniformSubScopesProcessor3; crossover.Successor = stochasticBranch; stochasticBranch.FirstBranch = mutator; stochasticBranch.SecondBranch = null; stochasticBranch.Successor = subScopesRemover; mutator.Successor = null; subScopesRemover.Successor = null; uniformSubScopesProcessor3.Operator = evaluator; uniformSubScopesProcessor3.Successor = subScopesCounter; evaluator.Successor = null; subScopesCounter.Successor = null; subScopesProcessor2.Operators.Add(bestSelector); subScopesProcessor2.Operators.Add(new EmptyOperator()); subScopesProcessor2.Successor = mergingReducer; mergingReducer.Successor = islandAnalyzer2; bestSelector.Successor = rightReducer; rightReducer.Successor = reevaluateElitesBranch; reevaluateElitesBranch.TrueBranch = uniformSubScopesProcessor3; reevaluateElitesBranch.FalseBranch = null; reevaluateElitesBranch.Successor = null; islandAnalyzer2.Successor = islandGenerationsCounter; islandGenerationsCounter.Successor = checkIslandGenerationsReachedMaximum; checkIslandGenerationsReachedMaximum.Successor = checkContinueEvolution; uniformSubScopesProcessor5.Operator = emigrantsSelector; emigrantsSelector.Successor = null; uniformSubScopesProcessor5.Successor = migrator; migrator.Successor = uniformSubScopesProcessor6; uniformSubScopesProcessor6.Operator = immigrationReplacer; uniformSubScopesProcessor6.Successor = generationsComparator; generationsComparator.Successor = analyzer2; analyzer2.Successor = generationsTerminationCondition; generationsTerminationCondition.TrueBranch = null; generationsTerminationCondition.FalseBranch = uniformSubScopesProcessor1; generationsTerminationCondition.Successor = null; #endregion } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { // BackwardsCompatibility3.3 #region Backwards compatible code, remove with 3.4 if (!Parameters.ContainsKey("ReevaluateElites")) { Parameters.Add(new ValueLookupParameter("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)")); } #endregion } public override IOperation Apply() { if (CrossoverParameter.ActualValue == null) return null; return base.Apply(); } } }