#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Linq; using HeuristicLab.Analysis; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Operators; using HeuristicLab.Optimization; using HeuristicLab.Optimization.Operators; using HeuristicLab.Parameters; using HeuristicLab.Persistence; using HeuristicLab.Random; namespace HeuristicLab.Algorithms.EvolutionStrategy { [Item("Evolution Strategy (ES)", "An evolution strategy.")] [Creatable(CreatableAttribute.Categories.PopulationBasedAlgorithms, Priority = 200)] [StorableType("64a53b8a-2784-4c84-b2c8-5450acd842d6")] public sealed class EvolutionStrategy : HeuristicOptimizationEngineAlgorithm, IStorableContent { public string Filename { get; set; } #region Problem Properties public override Type ProblemType { get { return typeof(ISingleObjectiveHeuristicOptimizationProblem); } } public new ISingleObjectiveHeuristicOptimizationProblem Problem { get { return (ISingleObjectiveHeuristicOptimizationProblem)base.Problem; } set { base.Problem = value; } } #endregion #region Parameter Properties private ValueParameter SeedParameter { get { return (ValueParameter)Parameters["Seed"]; } } private ValueParameter SetSeedRandomlyParameter { get { return (ValueParameter)Parameters["SetSeedRandomly"]; } } private ValueParameter PopulationSizeParameter { get { return (ValueParameter)Parameters["PopulationSize"]; } } private ValueParameter ParentsPerChildParameter { get { return (ValueParameter)Parameters["ParentsPerChild"]; } } private ValueParameter ChildrenParameter { get { return (ValueParameter)Parameters["Children"]; } } private ValueParameter MaximumGenerationsParameter { get { return (ValueParameter)Parameters["MaximumGenerations"]; } } private ValueParameter PlusSelectionParameter { get { return (ValueParameter)Parameters["PlusSelection"]; } } private IFixedValueParameter ReevaluateElitesParameter { get { return (IFixedValueParameter)Parameters["ReevaluateElites"]; } } public IConstrainedValueParameter MutatorParameter { get { return (IConstrainedValueParameter)Parameters["Mutator"]; } } public IConstrainedValueParameter RecombinatorParameter { get { return (IConstrainedValueParameter)Parameters["Recombinator"]; } } private ValueParameter AnalyzerParameter { get { return (ValueParameter)Parameters["Analyzer"]; } } public IConstrainedValueParameter StrategyParameterCreatorParameter { get { return (IConstrainedValueParameter)Parameters["StrategyParameterCreator"]; } } public IConstrainedValueParameter StrategyParameterCrossoverParameter { get { return (IConstrainedValueParameter)Parameters["StrategyParameterCrossover"]; } } public IConstrainedValueParameter StrategyParameterManipulatorParameter { get { return (IConstrainedValueParameter)Parameters["StrategyParameterManipulator"]; } } #endregion #region Properties public IntValue Seed { get { return SeedParameter.Value; } set { SeedParameter.Value = value; } } public BoolValue SetSeedRandomly { get { return SetSeedRandomlyParameter.Value; } set { SetSeedRandomlyParameter.Value = value; } } public IntValue PopulationSize { get { return PopulationSizeParameter.Value; } set { PopulationSizeParameter.Value = value; } } public IntValue ParentsPerChild { get { return ParentsPerChildParameter.Value; } set { ParentsPerChildParameter.Value = value; } } public IntValue Children { get { return ChildrenParameter.Value; } set { ChildrenParameter.Value = value; } } public IntValue MaximumGenerations { get { return MaximumGenerationsParameter.Value; } set { MaximumGenerationsParameter.Value = value; } } public BoolValue PlusSelection { get { return PlusSelectionParameter.Value; } set { PlusSelectionParameter.Value = value; } } public bool ReevaluteElites { get { return ReevaluateElitesParameter.Value.Value; } set { ReevaluateElitesParameter.Value.Value = value; } } public IManipulator Mutator { get { return MutatorParameter.Value; } set { MutatorParameter.Value = value; } } public ICrossover Recombinator { get { return RecombinatorParameter.Value; } set { RecombinatorParameter.Value = value; } } public MultiAnalyzer Analyzer { get { return AnalyzerParameter.Value; } set { AnalyzerParameter.Value = value; } } public IStrategyParameterCreator StrategyParameterCreator { get { return StrategyParameterCreatorParameter.Value; } set { StrategyParameterCreatorParameter.Value = value; } } public IStrategyParameterCrossover StrategyParameterCrossover { get { return StrategyParameterCrossoverParameter.Value; } set { StrategyParameterCrossoverParameter.Value = value; } } public IStrategyParameterManipulator StrategyParameterManipulator { get { return StrategyParameterManipulatorParameter.Value; } set { StrategyParameterManipulatorParameter.Value = value; } } private RandomCreator RandomCreator { get { return (RandomCreator)OperatorGraph.InitialOperator; } } private SolutionsCreator SolutionsCreator { get { return (SolutionsCreator)RandomCreator.Successor; } } private EvolutionStrategyMainLoop MainLoop { get { return FindMainLoop(SolutionsCreator.Successor); } } [Storable] private BestAverageWorstQualityAnalyzer qualityAnalyzer; #endregion public EvolutionStrategy() : base() { Parameters.Add(new ValueParameter("Seed", "The random seed used to initialize the new pseudo random number generator.", new IntValue(0))); Parameters.Add(new ValueParameter("SetSeedRandomly", "True if the random seed should be set to a random value, otherwise false.", new BoolValue(true))); Parameters.Add(new ValueParameter("PopulationSize", "µ (mu) - the size of the population.", new IntValue(20))); Parameters.Add(new ValueParameter("ParentsPerChild", "ρ (rho) - how many parents should be recombined.", new IntValue(1))); Parameters.Add(new ValueParameter("Children", "λ (lambda) - the size of the offspring population.", new IntValue(100))); Parameters.Add(new ValueParameter("MaximumGenerations", "The maximum number of generations which should be processed.", new IntValue(1000))); Parameters.Add(new ValueParameter("PlusSelection", "True for plus selection (elitist population), false for comma selection (non-elitist population).", new BoolValue(true))); Parameters.Add(new FixedValueParameter("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)", new BoolValue(false)) { Hidden = true }); Parameters.Add(new OptionalConstrainedValueParameter("Recombinator", "The operator used to cross solutions.")); Parameters.Add(new ConstrainedValueParameter("Mutator", "The operator used to mutate solutions.")); Parameters.Add(new OptionalConstrainedValueParameter("StrategyParameterCreator", "The operator that creates the strategy parameters.")); Parameters.Add(new OptionalConstrainedValueParameter("StrategyParameterCrossover", "The operator that recombines the strategy parameters.")); Parameters.Add(new OptionalConstrainedValueParameter("StrategyParameterManipulator", "The operator that manipulates the strategy parameters.")); Parameters.Add(new ValueParameter("Analyzer", "The operator used to analyze each generation.", new MultiAnalyzer())); RandomCreator randomCreator = new RandomCreator(); SolutionsCreator solutionsCreator = new SolutionsCreator(); SubScopesCounter subScopesCounter = new SubScopesCounter(); UniformSubScopesProcessor strategyVectorProcessor = new UniformSubScopesProcessor(); Placeholder strategyVectorCreator = new Placeholder(); ResultsCollector resultsCollector = new ResultsCollector(); EvolutionStrategyMainLoop mainLoop = new EvolutionStrategyMainLoop(); OperatorGraph.InitialOperator = randomCreator; randomCreator.RandomParameter.ActualName = "Random"; randomCreator.SeedParameter.ActualName = SeedParameter.Name; randomCreator.SeedParameter.Value = null; randomCreator.SetSeedRandomlyParameter.ActualName = SetSeedRandomlyParameter.Name; randomCreator.SetSeedRandomlyParameter.Value = null; randomCreator.Successor = solutionsCreator; solutionsCreator.NumberOfSolutionsParameter.ActualName = PopulationSizeParameter.Name; solutionsCreator.Successor = subScopesCounter; subScopesCounter.Name = "Initialize EvaluatedSolutions"; subScopesCounter.ValueParameter.ActualName = "EvaluatedSolutions"; subScopesCounter.Successor = strategyVectorProcessor; strategyVectorProcessor.Operator = strategyVectorCreator; strategyVectorProcessor.Successor = resultsCollector; strategyVectorCreator.OperatorParameter.ActualName = "StrategyParameterCreator"; resultsCollector.CollectedValues.Add(new LookupParameter("Evaluated Solutions", null, "EvaluatedSolutions")); resultsCollector.ResultsParameter.ActualName = "Results"; resultsCollector.Successor = mainLoop; mainLoop.RandomParameter.ActualName = RandomCreator.RandomParameter.ActualName; mainLoop.PopulationSizeParameter.ActualName = PopulationSizeParameter.Name; mainLoop.ParentsPerChildParameter.ActualName = ParentsPerChildParameter.Name; mainLoop.ChildrenParameter.ActualName = ChildrenParameter.Name; mainLoop.MaximumGenerationsParameter.ActualName = MaximumGenerationsParameter.Name; mainLoop.PlusSelectionParameter.ActualName = PlusSelectionParameter.Name; mainLoop.ReevaluateElitesParameter.ActualName = ReevaluateElitesParameter.Name; mainLoop.MutatorParameter.ActualName = MutatorParameter.Name; mainLoop.RecombinatorParameter.ActualName = RecombinatorParameter.Name; mainLoop.AnalyzerParameter.ActualName = AnalyzerParameter.Name; mainLoop.ResultsParameter.ActualName = "Results"; mainLoop.EvaluatedSolutionsParameter.ActualName = "EvaluatedSolutions"; qualityAnalyzer = new BestAverageWorstQualityAnalyzer(); ParameterizeAnalyzers(); UpdateAnalyzers(); Initialize(); } [StorableConstructor] private EvolutionStrategy(bool deserializing) : base(deserializing) { } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { // BackwardsCompatibility3.3 #region Backwards compatible code, remove with 3.4 if (!Parameters.ContainsKey("ReevaluateElites")) { Parameters.Add(new FixedValueParameter("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)", (BoolValue)new BoolValue(false).AsReadOnly()) { Hidden = true }); } #endregion Initialize(); } private EvolutionStrategy(EvolutionStrategy original, Cloner cloner) : base(original, cloner) { qualityAnalyzer = cloner.Clone(original.qualityAnalyzer); Initialize(); } public override IDeepCloneable Clone(Cloner cloner) { return new EvolutionStrategy(this, cloner); } public override void Prepare() { if (Problem != null) base.Prepare(); } #region Events protected override void OnProblemChanged() { ParameterizeStochasticOperator(Problem.SolutionCreator); ParameterizeStochasticOperator(Problem.Evaluator); foreach (IOperator op in Problem.Operators.OfType()) ParameterizeStochasticOperator(op); ParameterizeSolutionsCreator(); ParameterizeMainLoop(); ParameterizeAnalyzers(); ParameterizeIterationBasedOperators(); UpdateRecombinators(); UpdateMutators(); UpdateAnalyzers(); Problem.Evaluator.QualityParameter.ActualNameChanged += new EventHandler(Evaluator_QualityParameter_ActualNameChanged); base.OnProblemChanged(); } protected override void Problem_SolutionCreatorChanged(object sender, EventArgs e) { ParameterizeStochasticOperator(Problem.SolutionCreator); ParameterizeSolutionsCreator(); base.Problem_SolutionCreatorChanged(sender, e); } protected override void Problem_EvaluatorChanged(object sender, EventArgs e) { ParameterizeStochasticOperator(Problem.Evaluator); ParameterizeSolutionsCreator(); ParameterizeMainLoop(); ParameterizeAnalyzers(); Problem.Evaluator.QualityParameter.ActualNameChanged += new EventHandler(Evaluator_QualityParameter_ActualNameChanged); base.Problem_EvaluatorChanged(sender, e); } protected override void Problem_OperatorsChanged(object sender, EventArgs e) { foreach (IOperator op in Problem.Operators.OfType()) ParameterizeStochasticOperator(op); ParameterizeIterationBasedOperators(); UpdateRecombinators(); UpdateMutators(); UpdateAnalyzers(); base.Problem_OperatorsChanged(sender, e); } private void Evaluator_QualityParameter_ActualNameChanged(object sender, EventArgs e) { ParameterizeMainLoop(); ParameterizeAnalyzers(); } private void PopulationSizeParameter_ValueChanged(object sender, EventArgs e) { PopulationSize.ValueChanged += new EventHandler(PopulationSize_ValueChanged); PopulationSize_ValueChanged(null, EventArgs.Empty); } private void PopulationSize_ValueChanged(object sender, EventArgs e) { if (PopulationSize.Value <= 0) PopulationSize.Value = 1; if (!PlusSelection.Value && Children.Value < PopulationSize.Value) Children.Value = PopulationSize.Value; if (PopulationSize.Value < ParentsPerChild.Value) ParentsPerChild.Value = PopulationSize.Value; } private void ParentsPerChildParameter_ValueChanged(object sender, EventArgs e) { ParentsPerChild.ValueChanged += new EventHandler(ParentsPerChild_ValueChanged); ParentsPerChild_ValueChanged(null, EventArgs.Empty); } private void ParentsPerChild_ValueChanged(object sender, EventArgs e) { if (ParentsPerChild.Value < 1 || ParentsPerChild.Value > 1 && RecombinatorParameter.ValidValues.Count == 0) ParentsPerChild.Value = 1; if (ParentsPerChild.Value > 1 && Recombinator == null) Recombinator = RecombinatorParameter.ValidValues.First(); if (ParentsPerChild.Value > 1 && ParentsPerChild.Value > PopulationSize.Value) PopulationSize.Value = ParentsPerChild.Value; } private void ChildrenParameter_ValueChanged(object sender, EventArgs e) { Children.ValueChanged += new EventHandler(Children_ValueChanged); Children_ValueChanged(null, EventArgs.Empty); } private void Children_ValueChanged(object sender, EventArgs e) { if (Children.Value <= 0) Children.Value = 1; if (!PlusSelection.Value && Children.Value < PopulationSize.Value) PopulationSize.Value = Children.Value; } private void PlusSelectionParameter_ValueChanged(object sender, EventArgs e) { PlusSelection.ValueChanged += new EventHandler(PlusSelection_ValueChanged); PlusSelection_ValueChanged(null, EventArgs.Empty); } private void PlusSelection_ValueChanged(object sender, EventArgs e) { if (!PlusSelection.Value && Children.Value < PopulationSize.Value) Children.Value = PopulationSize.Value; } private void RecombinatorParameter_ValueChanged(object sender, EventArgs e) { if (Recombinator == null && ParentsPerChild.Value > 1) ParentsPerChild.Value = 1; else if (Recombinator != null && ParentsPerChild.Value == 1) ParentsPerChild.Value = 2; if (Recombinator != null && Mutator is ISelfAdaptiveManipulator && StrategyParameterCrossover == null) { if (StrategyParameterCrossoverParameter.ValidValues.Count > 0) StrategyParameterCrossover = StrategyParameterCrossoverParameter.ValidValues.First(); } } private void MutatorParameter_ValueChanged(object sender, EventArgs e) { if (Mutator is ISelfAdaptiveManipulator) { UpdateStrategyParameterOperators(); } else { StrategyParameterCreatorParameter.ValidValues.Clear(); StrategyParameterCrossoverParameter.ValidValues.Clear(); StrategyParameterManipulatorParameter.ValidValues.Clear(); UpdateRecombinators(); } } private void StrategyParameterCreatorParameter_ValueChanged(object sender, EventArgs e) { if (Mutator is ISelfAdaptiveManipulator && StrategyParameterCreator == null && StrategyParameterCreatorParameter.ValidValues.Count > 0) StrategyParameterCreator = StrategyParameterCreatorParameter.ValidValues.First(); } private void StrategyParameterCrossoverParameter_ValueChanged(object sender, EventArgs e) { if (Mutator is ISelfAdaptiveManipulator && Recombinator != null && StrategyParameterCrossover == null && StrategyParameterCrossoverParameter.ValidValues.Count > 0) StrategyParameterCrossover = StrategyParameterCrossoverParameter.ValidValues.First(); } #endregion #region Helpers private void Initialize() { PopulationSizeParameter.ValueChanged += new EventHandler(PopulationSizeParameter_ValueChanged); PopulationSize.ValueChanged += new EventHandler(PopulationSize_ValueChanged); ParentsPerChildParameter.ValueChanged += new EventHandler(ParentsPerChildParameter_ValueChanged); ParentsPerChild.ValueChanged += new EventHandler(ParentsPerChild_ValueChanged); ChildrenParameter.ValueChanged += new EventHandler(ChildrenParameter_ValueChanged); Children.ValueChanged += new EventHandler(Children_ValueChanged); PlusSelectionParameter.ValueChanged += new EventHandler(PlusSelectionParameter_ValueChanged); PlusSelection.ValueChanged += new EventHandler(PlusSelection_ValueChanged); RecombinatorParameter.ValueChanged += new EventHandler(RecombinatorParameter_ValueChanged); MutatorParameter.ValueChanged += new EventHandler(MutatorParameter_ValueChanged); StrategyParameterCrossoverParameter.ValueChanged += new EventHandler(StrategyParameterCrossoverParameter_ValueChanged); StrategyParameterCreatorParameter.ValueChanged += new EventHandler(StrategyParameterCreatorParameter_ValueChanged); if (Problem != null) Problem.Evaluator.QualityParameter.ActualNameChanged += new EventHandler(Evaluator_QualityParameter_ActualNameChanged); } private void ParameterizeSolutionsCreator() { SolutionsCreator.EvaluatorParameter.ActualName = Problem.EvaluatorParameter.Name; SolutionsCreator.EvaluatorParameter.Hidden = true; SolutionsCreator.SolutionCreatorParameter.ActualName = Problem.SolutionCreatorParameter.Name; SolutionsCreator.SolutionCreatorParameter.Hidden = true; } private void ParameterizeMainLoop() { MainLoop.BestKnownQualityParameter.ActualName = Problem.BestKnownQualityParameter.Name; MainLoop.EvaluatorParameter.ActualName = Problem.EvaluatorParameter.Name; MainLoop.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name; MainLoop.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName; } private void ParameterizeStochasticOperator(IOperator op) { if (op is IStochasticOperator) { IStochasticOperator stOp = (IStochasticOperator)op; stOp.RandomParameter.ActualName = RandomCreator.RandomParameter.ActualName; stOp.RandomParameter.Hidden = true; } } private void ParameterizeAnalyzers() { qualityAnalyzer.ResultsParameter.ActualName = "Results"; qualityAnalyzer.ResultsParameter.Hidden = true; if (Problem != null) { qualityAnalyzer.MaximizationParameter.ActualName = Problem.MaximizationParameter.Name; qualityAnalyzer.MaximizationParameter.Hidden = true; qualityAnalyzer.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName; qualityAnalyzer.QualityParameter.Depth = 1; qualityAnalyzer.QualityParameter.Hidden = true; qualityAnalyzer.BestKnownQualityParameter.ActualName = Problem.BestKnownQualityParameter.Name; qualityAnalyzer.BestKnownQualityParameter.Hidden = true; } else { qualityAnalyzer.MaximizationParameter.Hidden = false; qualityAnalyzer.QualityParameter.Hidden = false; qualityAnalyzer.BestKnownQualityParameter.Hidden = false; } } private void ParameterizeIterationBasedOperators() { if (Problem != null) { foreach (IIterationBasedOperator op in Problem.Operators.OfType()) { op.IterationsParameter.ActualName = "Generations"; op.IterationsParameter.Hidden = true; op.MaximumIterationsParameter.ActualName = "MaximumGenerations"; op.MaximumIterationsParameter.Hidden = true; } } } private void UpdateStrategyParameterOperators() { IStrategyParameterCreator oldStrategyCreator = StrategyParameterCreator; IStrategyParameterCrossover oldStrategyCrossover = StrategyParameterCrossover; IStrategyParameterManipulator oldStrategyManipulator = StrategyParameterManipulator; ClearStrategyParameterOperators(); ISelfAdaptiveManipulator manipulator = (Mutator as ISelfAdaptiveManipulator); if (manipulator != null) { var operators = Problem.Operators.OfType().Where(x => manipulator.StrategyParameterType.IsAssignableFrom(x.GetType())).OrderBy(x => x.Name); foreach (IStrategyParameterCreator strategyCreator in operators.OfType()) StrategyParameterCreatorParameter.ValidValues.Add(strategyCreator); foreach (IStrategyParameterCrossover strategyRecombinator in operators.OfType()) StrategyParameterCrossoverParameter.ValidValues.Add(strategyRecombinator); foreach (IStrategyParameterManipulator strategyManipulator in operators.OfType()) StrategyParameterManipulatorParameter.ValidValues.Add(strategyManipulator); if (StrategyParameterCrossoverParameter.ValidValues.Count == 0) RecombinatorParameter.ValidValues.Clear(); // if there is no strategy parameter crossover, there can be no crossover when the mutation operator needs strategy parameters if (oldStrategyCreator != null) { IStrategyParameterCreator tmp1 = StrategyParameterCreatorParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldStrategyCreator.GetType()); if (tmp1 != null) StrategyParameterCreator = tmp1; } else if (StrategyParameterCreatorParameter.ValidValues.Count > 0) StrategyParameterCreator = StrategyParameterCreatorParameter.ValidValues.First(); if (oldStrategyCrossover != null) { IStrategyParameterCrossover tmp2 = StrategyParameterCrossoverParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldStrategyCrossover.GetType()); if (tmp2 != null) StrategyParameterCrossover = tmp2; } else if (StrategyParameterCrossoverParameter.ValidValues.Count > 0) StrategyParameterCrossover = StrategyParameterCrossoverParameter.ValidValues.First(); if (oldStrategyManipulator != null) { IStrategyParameterManipulator tmp3 = StrategyParameterManipulatorParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldStrategyManipulator.GetType()); if (tmp3 != null) StrategyParameterManipulator = tmp3; } else if (StrategyParameterManipulatorParameter.ValidValues.Count > 0) StrategyParameterManipulator = StrategyParameterManipulatorParameter.ValidValues.First(); } } private void ClearStrategyParameterOperators() { StrategyParameterCreatorParameter.ValidValues.Clear(); StrategyParameterCrossoverParameter.ValidValues.Clear(); StrategyParameterManipulatorParameter.ValidValues.Clear(); } private void UpdateRecombinators() { ICrossover oldRecombinator = Recombinator; RecombinatorParameter.ValidValues.Clear(); foreach (ICrossover recombinator in Problem.Operators.OfType().OrderBy(x => x.Name)) { RecombinatorParameter.ValidValues.Add(recombinator); } if (oldRecombinator != null) { ICrossover recombinator = RecombinatorParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldRecombinator.GetType()); if (recombinator != null) RecombinatorParameter.Value = recombinator; } } private void UpdateMutators() { IManipulator oldMutator = MutatorParameter.Value; MutatorParameter.ValidValues.Clear(); foreach (IManipulator mutator in Problem.Operators.OfType().OrderBy(x => x.Name)) MutatorParameter.ValidValues.Add(mutator); if (oldMutator != null) { IManipulator mutator = MutatorParameter.ValidValues.FirstOrDefault(x => x.GetType() == oldMutator.GetType()); if (mutator != null) MutatorParameter.Value = mutator; } else if (MutatorParameter.ValidValues.Count > 0 && Problem.Operators.OfType().Count() > 0) { ISelfAdaptiveManipulator mutator = Problem.Operators.OfType().First(); if (mutator != null) MutatorParameter.Value = mutator; } } private void UpdateAnalyzers() { Analyzer.Operators.Clear(); if (Problem != null) { foreach (IAnalyzer analyzer in Problem.Operators.OfType()) { foreach (IScopeTreeLookupParameter param in analyzer.Parameters.OfType()) param.Depth = 1; Analyzer.Operators.Add(analyzer, analyzer.EnabledByDefault); } } Analyzer.Operators.Add(qualityAnalyzer, qualityAnalyzer.EnabledByDefault); } private EvolutionStrategyMainLoop FindMainLoop(IOperator start) { IOperator mainLoop = start; while (mainLoop != null && !(mainLoop is EvolutionStrategyMainLoop)) mainLoop = ((SingleSuccessorOperator)mainLoop).Successor; if (mainLoop == null) return null; else return (EvolutionStrategyMainLoop)mainLoop; } #endregion } }