#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Drawing; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Persistence; using HeuristicLab.Problems.DataAnalysis; using HeuristicLab.Optimization; using HeuristicLab.Data; namespace HeuristicLab.Algorithms.DataAnalysis { /// /// Represents a k-Means clustering solution for a clustering problem which can be visualized in the GUI. /// [Item("k-Means clustering solution", "Represents a k-Means solution for a clustering problem which can be visualized in the GUI.")] [StorableType("43ef58af-7372-45d0-a8ef-a54746d33225")] public sealed class KMeansClusteringSolution : ClusteringSolution { private const string TrainingIntraClusterSumOfSquaresResultName = "Intra-cluster sum of squares (training)"; private const string TestIntraClusterSumOfSquaresResultName = "Intra-cluster sum of squares (test)"; public new KMeansClusteringModel Model { get { return (KMeansClusteringModel)base.Model; } set { base.Model = value; } } [StorableConstructor] private KMeansClusteringSolution(StorableConstructorFlag deserializing) : base(deserializing) { } private KMeansClusteringSolution(KMeansClusteringSolution original, Cloner cloner) : base(original, cloner) { } public KMeansClusteringSolution(KMeansClusteringModel model, IClusteringProblemData problemData) : base(model, problemData) { double trainingIntraClusterSumOfSquares = KMeansClusteringUtil.CalculateIntraClusterSumOfSquares(model, problemData.Dataset, problemData.TrainingIndices); double testIntraClusterSumOfSquares = KMeansClusteringUtil.CalculateIntraClusterSumOfSquares(model, problemData.Dataset, problemData.TestIndices); this.Add(new Result(TrainingIntraClusterSumOfSquaresResultName, "The sum of squared distances of points of the training partition to the cluster center (is minimized by k-Means).", new DoubleValue(trainingIntraClusterSumOfSquares))); this.Add(new Result(TestIntraClusterSumOfSquaresResultName, "The sum of squared distances of points of the test partition to the cluster center (is minimized by k-Means).", new DoubleValue(testIntraClusterSumOfSquares))); } public override IDeepCloneable Clone(Cloner cloner) { return new KMeansClusteringSolution(this, cloner); } } }