#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ //Code is based on an implementation from Laurens van der Maaten /* * * Copyright (c) 2014, Laurens van der Maaten (Delft University of Technology) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the Delft University of Technology. * 4. Neither the name of the Delft University of Technology nor the names of * its contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY LAURENS VAN DER MAATEN ''AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL LAURENS VAN DER MAATEN BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY * OF SUCH DAMAGE. * */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; namespace HeuristicLab.Algorithms.DataAnalysis { /// /// Space partitioning tree (SPTree) /// public class SpacePartitioningTree : ISpacePartitioningTree { private const uint QT_NODE_CAPACITY = 1; private double[] buff; private SpacePartitioningTree parent; private int dimension; private bool isLeaf; private uint size; private uint cumulativeSize; // Axis-aligned bounding box stored as a center with half-dimensions to represent the boundaries of this quad tree private Cell boundary; private double[,] data; // Indices in this space-partitioning tree node, corresponding center-of-mass, and list of all children private double[] centerOfMass; private readonly int[] index = new int[QT_NODE_CAPACITY]; // Children private SpacePartitioningTree[] children; private uint noChildren; public SpacePartitioningTree(double[,] inpData) { var d = inpData.GetLength(1); var n = inpData.GetLength(0); var meanY = new double[d]; var minY = new double[d]; for (var i = 0; i < d; i++) minY[i] = double.MaxValue; var maxY = new double[d]; for (var i = 0; i < d; i++) maxY[i] = double.MinValue; for (uint i = 0; i < n; i++) { for (uint j = 0; j < d; j++) { meanY[j] += inpData[i, j]; if (inpData[i, j] < minY[j]) minY[j] = inpData[i, j]; if (inpData[i, j] > maxY[j]) maxY[j] = inpData[i, j]; } } for (var i = 0; i < d; i++) meanY[i] /= n; var width = new double[d]; for (var i = 0; i < d; i++) width[i] = Math.Max(maxY[i] - meanY[i], meanY[i] - minY[i]) + 1e-5; Init(null, inpData, meanY, width); Fill(n); } public SpacePartitioningTree(double[,] inpData, IEnumerable impCorner, IEnumerable impWith) { Init(null, inpData, impCorner, impWith); } public SpacePartitioningTree(SpacePartitioningTree parent, double[,] inpData, IEnumerable impCorner, IEnumerable impWith) { Init(parent, inpData, impCorner, impWith); } public ISpacePartitioningTree GetParent() { return parent; } public bool Insert(int newIndex) { // Ignore objects which do not belong in this quad tree var point = new double[dimension]; Buffer.BlockCopy(data, sizeof(double) * dimension * newIndex, point, 0, sizeof(double) * dimension); if (!boundary.ContainsPoint(point)) return false; cumulativeSize++; // Online update of cumulative size and center-of-mass var mult1 = (double)(cumulativeSize - 1) / cumulativeSize; var mult2 = 1.0 / cumulativeSize; for (var i = 0; i < dimension; i++) centerOfMass[i] *= mult1; for (var i = 0; i < dimension; i++) centerOfMass[i] += mult2 * point[i]; // If there is space in this quad tree and it is a leaf, add the object here if (isLeaf && size < QT_NODE_CAPACITY) { index[size] = newIndex; size++; return true; } // Don't add duplicates for now (this is not very nice) var anyDuplicate = false; for (uint n = 0; n < size; n++) { var duplicate = true; for (var d = 0; d < dimension; d++) { if (Math.Abs(point[d] - data[index[n], d]) < double.Epsilon) continue; duplicate = false; break; } anyDuplicate = anyDuplicate | duplicate; } if (anyDuplicate) return true; // Otherwise, we need to subdivide the current cell if (isLeaf) Subdivide(); // Find out where the point can be inserted for (var i = 0; i < noChildren; i++) { if (children[i].Insert(newIndex)) return true; } // Otherwise, the point cannot be inserted (this should never happen) return false; } public void Subdivide() { // Create new children var newCorner = new double[dimension]; var newWidth = new double[dimension]; for (var i = 0; i < noChildren; i++) { var div = 1; for (var d = 0; d < dimension; d++) { newWidth[d] = .5 * boundary.GetWidth(d); if ((i / div) % 2 == 1) newCorner[d] = boundary.GetCorner(d) - .5 * boundary.GetWidth(d); else newCorner[d] = boundary.GetCorner(d) + .5 * boundary.GetWidth(d); div *= 2; } children[i] = new SpacePartitioningTree(this, data, newCorner, newWidth); } // Move existing points to correct children for (var i = 0; i < size; i++) { var success = false; for (var j = 0; j < noChildren; j++) { if (!success) success = children[j].Insert(index[i]); } index[i] = -1; // as in tSNE implementation by van der Maaten } // Empty parent node size = 0; isLeaf = false; } public bool IsCorrect() { var row = new double[dimension]; for (var n = 0; n < size; n++) { Buffer.BlockCopy(data, sizeof(double) * dimension * index[n], row, 0, sizeof(double) * dimension); if (!boundary.ContainsPoint(row)) return false; } if (isLeaf) return true; var correct = true; for (var i = 0; i < noChildren; i++) correct = correct && children[i].IsCorrect(); return correct; } public void GetAllIndices(int[] indices) { GetAllIndices(indices, 0); } public int GetAllIndices(int[] indices, int loc) { // Gather indices in current quadrant for (var i = 0; i < size; i++) indices[loc + i] = index[i]; loc += (int)size; // Gather indices in children if (isLeaf) return loc; for (var i = 0; i < noChildren; i++) loc = children[i].GetAllIndices(indices, loc); return loc; } public int GetDepth() { return isLeaf ? 1 : 1 + children.Max(x => x.GetDepth()); } public void ComputeNonEdgeForces(int pointIndex, double theta, double[] negF, ref double sumQ) { // Make sure that we spend no time on empty nodes or self-interactions if (cumulativeSize == 0 || (isLeaf && size == 1 && index[0] == pointIndex)) return; // Compute distance between point and center-of-mass var D = .0; for (var d = 0; d < dimension; d++) buff[d] = data[pointIndex, d] - centerOfMass[d]; for (var d = 0; d < dimension; d++) D += buff[d] * buff[d]; // Check whether we can use this node as a "summary" var maxWidth = 0.0; for (var d = 0; d < dimension; d++) { var curWidth = boundary.GetWidth(d); maxWidth = (maxWidth > curWidth) ? maxWidth : curWidth; } if (isLeaf || maxWidth / Math.Sqrt(D) < theta) { // Compute and add t-SNE force between point and current node D = 1.0 / (1.0 + D); var mult = cumulativeSize * D; sumQ += mult; mult *= D; for (var d = 0; d < dimension; d++) negF[d] += mult * buff[d]; } else { // Recursively apply Barnes-Hut to children for (var i = 0; i < noChildren; i++) children[i].ComputeNonEdgeForces(pointIndex, theta, negF, ref sumQ); } } // does not use the tree public void ComputeEdgeForces(int[] rowP, int[] colP, double[] valP, int n, double[,] posF) { // Loop over all edges in the graph for (var k = 0; k < n; k++) { for (var i = rowP[k]; i < rowP[k + 1]; i++) { // Compute pairwise distance and Q-value // uses squared distance var d = 1.0; for (var j = 0; j < dimension; j++) buff[j] = data[k, j] - data[colP[i], j]; for (var j = 0; j < dimension; j++) d += buff[j] * buff[j]; d = valP[i] / d; // Sum positive force for (var j = 0; j < dimension; j++) posF[k, j] += d * buff[j]; } } } #region Helpers private void Fill(int n) { for (var i = 0; i < n; i++) Insert(i); } private void Init(SpacePartitioningTree p, double[,] inpData, IEnumerable inpCorner, IEnumerable inpWidth) { parent = p; dimension = inpData.GetLength(1); noChildren = 2; for (uint i = 1; i < dimension; i++) noChildren *= 2; data = inpData; isLeaf = true; size = 0; cumulativeSize = 0; boundary = new Cell((uint)dimension); inpCorner.ForEach((i, x) => boundary.SetCorner(i, x)); inpWidth.ForEach((i, x) => boundary.SetWidth(i, x)); children = new SpacePartitioningTree[noChildren]; centerOfMass = new double[dimension]; buff = new double[dimension]; } #endregion private class Cell { private readonly uint dimension; private readonly double[] corner; private readonly double[] width; public Cell(uint inpDimension) { dimension = inpDimension; corner = new double[dimension]; width = new double[dimension]; } public double GetCorner(int d) { return corner[d]; } public double GetWidth(int d) { return width[d]; } public void SetCorner(int d, double val) { corner[d] = val; } public void SetWidth(int d, double val) { width[d] = val; } public bool ContainsPoint(double[] point) { for (var d = 0; d < dimension; d++) if (corner[d] - width[d] > point[d] || corner[d] + width[d] < point[d]) return false; return true; } } } }