#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using System.Threading; using HeuristicLab.Analysis; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence; using HeuristicLab.Problems.DataAnalysis; using HeuristicLab.Problems.DataAnalysis.Symbolic; using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression; using HeuristicLab.Random; namespace HeuristicLab.Algorithms.DataAnalysis { /// /// Nonlinear regression data analysis algorithm. /// [Item("Nonlinear Regression (NLR)", "Nonlinear regression (curve fitting) data analysis algorithm (wrapper for ALGLIB).")] [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 120)] [StorableType("8cb4fd12-e936-4a3f-befa-95baa246c0fb")] public sealed class NonlinearRegression : FixedDataAnalysisAlgorithm { private const string RegressionSolutionResultName = "Regression solution"; private const string ModelStructureParameterName = "Model structure"; private const string IterationsParameterName = "Iterations"; private const string RestartsParameterName = "Restarts"; private const string SetSeedRandomlyParameterName = "SetSeedRandomly"; private const string SeedParameterName = "Seed"; private const string InitParamsRandomlyParameterName = "InitializeParametersRandomly"; public IFixedValueParameter ModelStructureParameter { get { return (IFixedValueParameter)Parameters[ModelStructureParameterName]; } } public IFixedValueParameter IterationsParameter { get { return (IFixedValueParameter)Parameters[IterationsParameterName]; } } public IFixedValueParameter SetSeedRandomlyParameter { get { return (IFixedValueParameter)Parameters[SetSeedRandomlyParameterName]; } } public IFixedValueParameter SeedParameter { get { return (IFixedValueParameter)Parameters[SeedParameterName]; } } public IFixedValueParameter RestartsParameter { get { return (IFixedValueParameter)Parameters[RestartsParameterName]; } } public IFixedValueParameter InitParametersRandomlyParameter { get { return (IFixedValueParameter)Parameters[InitParamsRandomlyParameterName]; } } public string ModelStructure { get { return ModelStructureParameter.Value.Value; } set { ModelStructureParameter.Value.Value = value; } } public int Iterations { get { return IterationsParameter.Value.Value; } set { IterationsParameter.Value.Value = value; } } public int Restarts { get { return RestartsParameter.Value.Value; } set { RestartsParameter.Value.Value = value; } } public int Seed { get { return SeedParameter.Value.Value; } set { SeedParameter.Value.Value = value; } } public bool SetSeedRandomly { get { return SetSeedRandomlyParameter.Value.Value; } set { SetSeedRandomlyParameter.Value.Value = value; } } public bool InitializeParametersRandomly { get { return InitParametersRandomlyParameter.Value.Value; } set { InitParametersRandomlyParameter.Value.Value = value; } } [StorableConstructor] private NonlinearRegression(StorableConstructorFlag deserializing) : base(deserializing) { } private NonlinearRegression(NonlinearRegression original, Cloner cloner) : base(original, cloner) { } public NonlinearRegression() : base() { Problem = new RegressionProblem(); Parameters.Add(new FixedValueParameter(ModelStructureParameterName, "The function for which the parameters must be fit (only numeric constants are tuned).", new StringValue("1.0 * x*x + 0.0"))); Parameters.Add(new FixedValueParameter(IterationsParameterName, "The maximum number of iterations for constants optimization.", new IntValue(200))); Parameters.Add(new FixedValueParameter(RestartsParameterName, "The number of independent random restarts (>0)", new IntValue(10))); Parameters.Add(new FixedValueParameter(SeedParameterName, "The PRNG seed value.", new IntValue())); Parameters.Add(new FixedValueParameter(SetSeedRandomlyParameterName, "Switch to determine if the random number seed should be initialized randomly.", new BoolValue(true))); Parameters.Add(new FixedValueParameter(InitParamsRandomlyParameterName, "Switch to determine if the real-valued model parameters should be initialized randomly in each restart.", new BoolValue(false))); SetParameterHiddenState(); InitParametersRandomlyParameter.Value.ValueChanged += (sender, args) => { SetParameterHiddenState(); }; } private void SetParameterHiddenState() { var hide = !InitializeParametersRandomly; RestartsParameter.Hidden = hide; SeedParameter.Hidden = hide; SetSeedRandomlyParameter.Hidden = hide; } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { // BackwardsCompatibility3.3 #region Backwards compatible code, remove with 3.4 if (!Parameters.ContainsKey(RestartsParameterName)) Parameters.Add(new FixedValueParameter(RestartsParameterName, "The number of independent random restarts", new IntValue(1))); if (!Parameters.ContainsKey(SeedParameterName)) Parameters.Add(new FixedValueParameter(SeedParameterName, "The PRNG seed value.", new IntValue())); if (!Parameters.ContainsKey(SetSeedRandomlyParameterName)) Parameters.Add(new FixedValueParameter(SetSeedRandomlyParameterName, "Switch to determine if the random number seed should be initialized randomly.", new BoolValue(true))); if (!Parameters.ContainsKey(InitParamsRandomlyParameterName)) Parameters.Add(new FixedValueParameter(InitParamsRandomlyParameterName, "Switch to determine if the numeric parameters of the model should be initialized randomly.", new BoolValue(false))); SetParameterHiddenState(); InitParametersRandomlyParameter.Value.ValueChanged += (sender, args) => { SetParameterHiddenState(); }; #endregion } public override IDeepCloneable Clone(Cloner cloner) { return new NonlinearRegression(this, cloner); } #region nonlinear regression protected override void Run(CancellationToken cancellationToken) { IRegressionSolution bestSolution = null; if (InitializeParametersRandomly) { var qualityTable = new DataTable("RMSE table"); qualityTable.VisualProperties.YAxisLogScale = true; var trainRMSERow = new DataRow("RMSE (train)"); trainRMSERow.VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points; var testRMSERow = new DataRow("RMSE test"); testRMSERow.VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points; qualityTable.Rows.Add(trainRMSERow); qualityTable.Rows.Add(testRMSERow); Results.Add(new Result(qualityTable.Name, qualityTable.Name + " for all restarts", qualityTable)); if (SetSeedRandomly) Seed = (new System.Random()).Next(); var rand = new MersenneTwister((uint)Seed); bestSolution = CreateRegressionSolution(Problem.ProblemData, ModelStructure, Iterations, rand); trainRMSERow.Values.Add(bestSolution.TrainingRootMeanSquaredError); testRMSERow.Values.Add(bestSolution.TestRootMeanSquaredError); for (int r = 0; r < Restarts; r++) { var solution = CreateRegressionSolution(Problem.ProblemData, ModelStructure, Iterations, rand); trainRMSERow.Values.Add(solution.TrainingRootMeanSquaredError); testRMSERow.Values.Add(solution.TestRootMeanSquaredError); if (solution.TrainingRootMeanSquaredError < bestSolution.TrainingRootMeanSquaredError) { bestSolution = solution; } } } else { bestSolution = CreateRegressionSolution(Problem.ProblemData, ModelStructure, Iterations); } Results.Add(new Result(RegressionSolutionResultName, "The nonlinear regression solution.", bestSolution)); Results.Add(new Result("Root mean square error (train)", "The root of the mean of squared errors of the regression solution on the training set.", new DoubleValue(bestSolution.TrainingRootMeanSquaredError))); Results.Add(new Result("Root mean square error (test)", "The root of the mean of squared errors of the regression solution on the test set.", new DoubleValue(bestSolution.TestRootMeanSquaredError))); } /// /// Fits a model to the data by optimizing the numeric constants. /// Model is specified as infix expression containing variable names and numbers. /// The starting point for the numeric constants is initialized randomly if a random number generator is specified (~N(0,1)). Otherwise the user specified constants are /// used as a starting point. /// - /// Training and test data /// The function as infix expression /// Number of constant optimization iterations (using Levenberg-Marquardt algorithm) /// Optional random number generator for random initialization of numeric constants. /// public static ISymbolicRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData, string modelStructure, int maxIterations, IRandom rand = null) { var parser = new InfixExpressionParser(); var tree = parser.Parse(modelStructure); // parser handles double and string variables equally by creating a VariableTreeNode // post-process to replace VariableTreeNodes by FactorVariableTreeNodes for all string variables var factorSymbol = new FactorVariable(); factorSymbol.VariableNames = problemData.AllowedInputVariables.Where(name => problemData.Dataset.VariableHasType(name)); factorSymbol.AllVariableNames = factorSymbol.VariableNames; factorSymbol.VariableValues = factorSymbol.VariableNames.Select(name => new KeyValuePair>(name, problemData.Dataset.GetReadOnlyStringValues(name).Distinct() .Select((n, i) => Tuple.Create(n, i)) .ToDictionary(tup => tup.Item1, tup => tup.Item2))); foreach (var parent in tree.IterateNodesPrefix().ToArray()) { for (int i = 0; i < parent.SubtreeCount; i++) { var varChild = parent.GetSubtree(i) as VariableTreeNode; var factorVarChild = parent.GetSubtree(i) as FactorVariableTreeNode; if (varChild != null && factorSymbol.VariableNames.Contains(varChild.VariableName)) { parent.RemoveSubtree(i); var factorTreeNode = (FactorVariableTreeNode)factorSymbol.CreateTreeNode(); factorTreeNode.VariableName = varChild.VariableName; factorTreeNode.Weights = factorTreeNode.Symbol.GetVariableValues(factorTreeNode.VariableName).Select(_ => 1.0).ToArray(); // weight = 1.0 for each value parent.InsertSubtree(i, factorTreeNode); } else if (factorVarChild != null && factorSymbol.VariableNames.Contains(factorVarChild.VariableName)) { if (factorSymbol.GetVariableValues(factorVarChild.VariableName).Count() != factorVarChild.Weights.Length) throw new ArgumentException( string.Format("Factor variable {0} needs exactly {1} weights", factorVarChild.VariableName, factorSymbol.GetVariableValues(factorVarChild.VariableName).Count())); parent.RemoveSubtree(i); var factorTreeNode = (FactorVariableTreeNode)factorSymbol.CreateTreeNode(); factorTreeNode.VariableName = factorVarChild.VariableName; factorTreeNode.Weights = factorVarChild.Weights; parent.InsertSubtree(i, factorTreeNode); } } } if (!SymbolicRegressionConstantOptimizationEvaluator.CanOptimizeConstants(tree)) throw new ArgumentException("The optimizer does not support the specified model structure."); // initialize constants randomly if (rand != null) { foreach (var node in tree.IterateNodesPrefix().OfType()) { double f = Math.Exp(NormalDistributedRandom.NextDouble(rand, 0, 1)); double s = rand.NextDouble() < 0.5 ? -1 : 1; node.Value = s * node.Value * f; } } var interpreter = new SymbolicDataAnalysisExpressionTreeLinearInterpreter(); SymbolicRegressionConstantOptimizationEvaluator.OptimizeConstants(interpreter, tree, problemData, problemData.TrainingIndices, applyLinearScaling: false, maxIterations: maxIterations, updateVariableWeights: false, updateConstantsInTree: true); var scaledModel = new SymbolicRegressionModel(problemData.TargetVariable, tree, (ISymbolicDataAnalysisExpressionTreeInterpreter)interpreter.Clone()); scaledModel.Scale(problemData); SymbolicRegressionSolution solution = new SymbolicRegressionSolution(scaledModel, (IRegressionProblemData)problemData.Clone()); solution.Model.Name = "Regression Model"; solution.Name = "Regression Solution"; return solution; } #endregion } }