#region License Information
/* HeuristicLab
* Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading;
using HeuristicLab.Analysis;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence;
using HeuristicLab.Problems.DataAnalysis;
using HeuristicLab.Problems.DataAnalysis.Symbolic;
using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
using HeuristicLab.Random;
namespace HeuristicLab.Algorithms.DataAnalysis {
///
/// Nonlinear regression data analysis algorithm.
///
[Item("Nonlinear Regression (NLR)", "Nonlinear regression (curve fitting) data analysis algorithm (wrapper for ALGLIB).")]
[Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 120)]
[StorableType("8cb4fd12-e936-4a3f-befa-95baa246c0fb")]
public sealed class NonlinearRegression : FixedDataAnalysisAlgorithm {
private const string RegressionSolutionResultName = "Regression solution";
private const string ModelStructureParameterName = "Model structure";
private const string IterationsParameterName = "Iterations";
private const string RestartsParameterName = "Restarts";
private const string SetSeedRandomlyParameterName = "SetSeedRandomly";
private const string SeedParameterName = "Seed";
private const string InitParamsRandomlyParameterName = "InitializeParametersRandomly";
public IFixedValueParameter ModelStructureParameter {
get { return (IFixedValueParameter)Parameters[ModelStructureParameterName]; }
}
public IFixedValueParameter IterationsParameter {
get { return (IFixedValueParameter)Parameters[IterationsParameterName]; }
}
public IFixedValueParameter SetSeedRandomlyParameter {
get { return (IFixedValueParameter)Parameters[SetSeedRandomlyParameterName]; }
}
public IFixedValueParameter SeedParameter {
get { return (IFixedValueParameter)Parameters[SeedParameterName]; }
}
public IFixedValueParameter RestartsParameter {
get { return (IFixedValueParameter)Parameters[RestartsParameterName]; }
}
public IFixedValueParameter InitParametersRandomlyParameter {
get { return (IFixedValueParameter)Parameters[InitParamsRandomlyParameterName]; }
}
public string ModelStructure {
get { return ModelStructureParameter.Value.Value; }
set { ModelStructureParameter.Value.Value = value; }
}
public int Iterations {
get { return IterationsParameter.Value.Value; }
set { IterationsParameter.Value.Value = value; }
}
public int Restarts {
get { return RestartsParameter.Value.Value; }
set { RestartsParameter.Value.Value = value; }
}
public int Seed {
get { return SeedParameter.Value.Value; }
set { SeedParameter.Value.Value = value; }
}
public bool SetSeedRandomly {
get { return SetSeedRandomlyParameter.Value.Value; }
set { SetSeedRandomlyParameter.Value.Value = value; }
}
public bool InitializeParametersRandomly {
get { return InitParametersRandomlyParameter.Value.Value; }
set { InitParametersRandomlyParameter.Value.Value = value; }
}
[StorableConstructor]
private NonlinearRegression(StorableConstructorFlag deserializing) : base(deserializing) { }
private NonlinearRegression(NonlinearRegression original, Cloner cloner)
: base(original, cloner) {
}
public NonlinearRegression()
: base() {
Problem = new RegressionProblem();
Parameters.Add(new FixedValueParameter(ModelStructureParameterName, "The function for which the parameters must be fit (only numeric constants are tuned).", new StringValue("1.0 * x*x + 0.0")));
Parameters.Add(new FixedValueParameter(IterationsParameterName, "The maximum number of iterations for constants optimization.", new IntValue(200)));
Parameters.Add(new FixedValueParameter(RestartsParameterName, "The number of independent random restarts (>0)", new IntValue(10)));
Parameters.Add(new FixedValueParameter(SeedParameterName, "The PRNG seed value.", new IntValue()));
Parameters.Add(new FixedValueParameter(SetSeedRandomlyParameterName, "Switch to determine if the random number seed should be initialized randomly.", new BoolValue(true)));
Parameters.Add(new FixedValueParameter(InitParamsRandomlyParameterName, "Switch to determine if the real-valued model parameters should be initialized randomly in each restart.", new BoolValue(false)));
SetParameterHiddenState();
InitParametersRandomlyParameter.Value.ValueChanged += (sender, args) => {
SetParameterHiddenState();
};
}
private void SetParameterHiddenState() {
var hide = !InitializeParametersRandomly;
RestartsParameter.Hidden = hide;
SeedParameter.Hidden = hide;
SetSeedRandomlyParameter.Hidden = hide;
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
// BackwardsCompatibility3.3
#region Backwards compatible code, remove with 3.4
if (!Parameters.ContainsKey(RestartsParameterName))
Parameters.Add(new FixedValueParameter(RestartsParameterName, "The number of independent random restarts", new IntValue(1)));
if (!Parameters.ContainsKey(SeedParameterName))
Parameters.Add(new FixedValueParameter(SeedParameterName, "The PRNG seed value.", new IntValue()));
if (!Parameters.ContainsKey(SetSeedRandomlyParameterName))
Parameters.Add(new FixedValueParameter(SetSeedRandomlyParameterName, "Switch to determine if the random number seed should be initialized randomly.", new BoolValue(true)));
if (!Parameters.ContainsKey(InitParamsRandomlyParameterName))
Parameters.Add(new FixedValueParameter(InitParamsRandomlyParameterName, "Switch to determine if the numeric parameters of the model should be initialized randomly.", new BoolValue(false)));
SetParameterHiddenState();
InitParametersRandomlyParameter.Value.ValueChanged += (sender, args) => {
SetParameterHiddenState();
};
#endregion
}
public override IDeepCloneable Clone(Cloner cloner) {
return new NonlinearRegression(this, cloner);
}
#region nonlinear regression
protected override void Run(CancellationToken cancellationToken) {
IRegressionSolution bestSolution = null;
if (InitializeParametersRandomly) {
var qualityTable = new DataTable("RMSE table");
qualityTable.VisualProperties.YAxisLogScale = true;
var trainRMSERow = new DataRow("RMSE (train)");
trainRMSERow.VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points;
var testRMSERow = new DataRow("RMSE test");
testRMSERow.VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points;
qualityTable.Rows.Add(trainRMSERow);
qualityTable.Rows.Add(testRMSERow);
Results.Add(new Result(qualityTable.Name, qualityTable.Name + " for all restarts", qualityTable));
if (SetSeedRandomly) Seed = (new System.Random()).Next();
var rand = new MersenneTwister((uint)Seed);
bestSolution = CreateRegressionSolution(Problem.ProblemData, ModelStructure, Iterations, rand);
trainRMSERow.Values.Add(bestSolution.TrainingRootMeanSquaredError);
testRMSERow.Values.Add(bestSolution.TestRootMeanSquaredError);
for (int r = 0; r < Restarts; r++) {
var solution = CreateRegressionSolution(Problem.ProblemData, ModelStructure, Iterations, rand);
trainRMSERow.Values.Add(solution.TrainingRootMeanSquaredError);
testRMSERow.Values.Add(solution.TestRootMeanSquaredError);
if (solution.TrainingRootMeanSquaredError < bestSolution.TrainingRootMeanSquaredError) {
bestSolution = solution;
}
}
} else {
bestSolution = CreateRegressionSolution(Problem.ProblemData, ModelStructure, Iterations);
}
Results.Add(new Result(RegressionSolutionResultName, "The nonlinear regression solution.", bestSolution));
Results.Add(new Result("Root mean square error (train)", "The root of the mean of squared errors of the regression solution on the training set.", new DoubleValue(bestSolution.TrainingRootMeanSquaredError)));
Results.Add(new Result("Root mean square error (test)", "The root of the mean of squared errors of the regression solution on the test set.", new DoubleValue(bestSolution.TestRootMeanSquaredError)));
}
///
/// Fits a model to the data by optimizing the numeric constants.
/// Model is specified as infix expression containing variable names and numbers.
/// The starting point for the numeric constants is initialized randomly if a random number generator is specified (~N(0,1)). Otherwise the user specified constants are
/// used as a starting point.
/// -
/// Training and test data
/// The function as infix expression
/// Number of constant optimization iterations (using Levenberg-Marquardt algorithm)
/// Optional random number generator for random initialization of numeric constants.
///
public static ISymbolicRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData, string modelStructure, int maxIterations, IRandom rand = null) {
var parser = new InfixExpressionParser();
var tree = parser.Parse(modelStructure);
// parser handles double and string variables equally by creating a VariableTreeNode
// post-process to replace VariableTreeNodes by FactorVariableTreeNodes for all string variables
var factorSymbol = new FactorVariable();
factorSymbol.VariableNames =
problemData.AllowedInputVariables.Where(name => problemData.Dataset.VariableHasType(name));
factorSymbol.AllVariableNames = factorSymbol.VariableNames;
factorSymbol.VariableValues =
factorSymbol.VariableNames.Select(name =>
new KeyValuePair>(name,
problemData.Dataset.GetReadOnlyStringValues(name).Distinct()
.Select((n, i) => Tuple.Create(n, i))
.ToDictionary(tup => tup.Item1, tup => tup.Item2)));
foreach (var parent in tree.IterateNodesPrefix().ToArray()) {
for (int i = 0; i < parent.SubtreeCount; i++) {
var varChild = parent.GetSubtree(i) as VariableTreeNode;
var factorVarChild = parent.GetSubtree(i) as FactorVariableTreeNode;
if (varChild != null && factorSymbol.VariableNames.Contains(varChild.VariableName)) {
parent.RemoveSubtree(i);
var factorTreeNode = (FactorVariableTreeNode)factorSymbol.CreateTreeNode();
factorTreeNode.VariableName = varChild.VariableName;
factorTreeNode.Weights =
factorTreeNode.Symbol.GetVariableValues(factorTreeNode.VariableName).Select(_ => 1.0).ToArray();
// weight = 1.0 for each value
parent.InsertSubtree(i, factorTreeNode);
} else if (factorVarChild != null && factorSymbol.VariableNames.Contains(factorVarChild.VariableName)) {
if (factorSymbol.GetVariableValues(factorVarChild.VariableName).Count() != factorVarChild.Weights.Length)
throw new ArgumentException(
string.Format("Factor variable {0} needs exactly {1} weights",
factorVarChild.VariableName,
factorSymbol.GetVariableValues(factorVarChild.VariableName).Count()));
parent.RemoveSubtree(i);
var factorTreeNode = (FactorVariableTreeNode)factorSymbol.CreateTreeNode();
factorTreeNode.VariableName = factorVarChild.VariableName;
factorTreeNode.Weights = factorVarChild.Weights;
parent.InsertSubtree(i, factorTreeNode);
}
}
}
if (!SymbolicRegressionConstantOptimizationEvaluator.CanOptimizeConstants(tree)) throw new ArgumentException("The optimizer does not support the specified model structure.");
// initialize constants randomly
if (rand != null) {
foreach (var node in tree.IterateNodesPrefix().OfType()) {
double f = Math.Exp(NormalDistributedRandom.NextDouble(rand, 0, 1));
double s = rand.NextDouble() < 0.5 ? -1 : 1;
node.Value = s * node.Value * f;
}
}
var interpreter = new SymbolicDataAnalysisExpressionTreeLinearInterpreter();
SymbolicRegressionConstantOptimizationEvaluator.OptimizeConstants(interpreter, tree, problemData, problemData.TrainingIndices,
applyLinearScaling: false, maxIterations: maxIterations,
updateVariableWeights: false, updateConstantsInTree: true);
var scaledModel = new SymbolicRegressionModel(problemData.TargetVariable, tree, (ISymbolicDataAnalysisExpressionTreeInterpreter)interpreter.Clone());
scaledModel.Scale(problemData);
SymbolicRegressionSolution solution = new SymbolicRegressionSolution(scaledModel, (IRegressionProblemData)problemData.Clone());
solution.Model.Name = "Regression Model";
solution.Name = "Regression Solution";
return solution;
}
#endregion
}
}