#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Linq; using System.Threading; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence; using HeuristicLab.Problems.DataAnalysis; namespace HeuristicLab.Algorithms.DataAnalysis { /// /// Nearest neighbour classification data analysis algorithm. /// [Item("Nearest Neighbour Classification (kNN)", "Nearest neighbour classification data analysis algorithm (wrapper for ALGLIB).")] [Creatable(CreatableAttribute.Categories.DataAnalysisClassification, Priority = 150)] [StorableType("014b7587-cf2f-4e43-aeb7-de52ddded552")] public sealed class NearestNeighbourClassification : FixedDataAnalysisAlgorithm { private const string KParameterName = "K"; private const string NearestNeighbourClassificationModelResultName = "Nearest neighbour classification solution"; private const string WeightsParameterName = "Weights"; #region parameter properties public IFixedValueParameter KParameter { get { return (IFixedValueParameter)Parameters[KParameterName]; } } public IValueParameter WeightsParameter { get { return (IValueParameter)Parameters[WeightsParameterName]; } } #endregion #region properties public int K { get { return KParameter.Value.Value; } set { if (value <= 0) throw new ArgumentException("K must be larger than zero.", "K"); else KParameter.Value.Value = value; } } public DoubleArray Weights { get { return WeightsParameter.Value; } set { WeightsParameter.Value = value; } } #endregion [StorableConstructor] private NearestNeighbourClassification(bool deserializing) : base(deserializing) { } private NearestNeighbourClassification(NearestNeighbourClassification original, Cloner cloner) : base(original, cloner) { } public NearestNeighbourClassification() : base() { Parameters.Add(new FixedValueParameter(KParameterName, "The number of nearest neighbours to consider for regression.", new IntValue(3))); Parameters.Add(new OptionalValueParameter(WeightsParameterName, "Optional: use weights to specify individual scaling values for all features. If not set the weights are calculated automatically (each feature is scaled to unit variance)")); Problem = new ClassificationProblem(); } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { // BackwardsCompatibility3.3 #region Backwards compatible code, remove with 3.4 if (!Parameters.ContainsKey(WeightsParameterName)) { Parameters.Add(new OptionalValueParameter(WeightsParameterName, "Optional: use weights to specify individual scaling values for all features. If not set the weights are calculated automatically (each feature is scaled to unit variance)")); } #endregion } public override IDeepCloneable Clone(Cloner cloner) { return new NearestNeighbourClassification(this, cloner); } #region nearest neighbour protected override void Run(CancellationToken cancellationToken) { double[] weights = null; if (Weights != null) weights = Weights.CloneAsArray(); var solution = CreateNearestNeighbourClassificationSolution(Problem.ProblemData, K, weights); Results.Add(new Result(NearestNeighbourClassificationModelResultName, "The nearest neighbour classification solution.", solution)); } public static IClassificationSolution CreateNearestNeighbourClassificationSolution(IClassificationProblemData problemData, int k, double[] weights = null) { var problemDataClone = (IClassificationProblemData)problemData.Clone(); return new NearestNeighbourClassificationSolution(Train(problemDataClone, k, weights), problemDataClone); } public static INearestNeighbourModel Train(IClassificationProblemData problemData, int k, double[] weights = null) { return new NearestNeighbourModel(problemData.Dataset, problemData.TrainingIndices, k, problemData.TargetVariable, problemData.AllowedInputVariables, weights, problemData.ClassValues.ToArray()); } #endregion } }