#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Linq; using System.Threading; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence; using HeuristicLab.Problems.DataAnalysis; namespace HeuristicLab.Algorithms.DataAnalysis.KernelRidgeRegression { [Item("Kernel Ridge Regression", "Kernelized ridge regression e.g. for radial basis function (RBF) regression.")] [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 100)] [StorableType("ea532dbe-1c68-4fd8-84f2-0f2ca8a8cd27")] public sealed class KernelRidgeRegression : BasicAlgorithm { private const string SolutionResultName = "Kernel ridge regression solution"; public override bool SupportsPause { get { return false; } } public override Type ProblemType { get { return typeof(IRegressionProblem); } } public new IRegressionProblem Problem { get { return (IRegressionProblem)base.Problem; } set { base.Problem = value; } } #region parameter names private const string KernelParameterName = "Kernel"; private const string ScaleInputVariablesParameterName = "ScaleInputVariables"; private const string LambdaParameterName = "LogLambda"; private const string BetaParameterName = "Beta"; #endregion #region parameter properties public ValueParameter KernelParameter { get { return (ValueParameter)Parameters[KernelParameterName]; } } public IFixedValueParameter ScaleInputVariablesParameter { get { return (IFixedValueParameter)Parameters[ScaleInputVariablesParameterName]; } } public IFixedValueParameter LogLambdaParameter { get { return (IFixedValueParameter)Parameters[LambdaParameterName]; } } public IFixedValueParameter BetaParameter { get { return (IFixedValueParameter)Parameters[BetaParameterName]; } } #endregion #region properties public IKernel Kernel { get { return KernelParameter.Value; } } public bool ScaleInputVariables { get { return ScaleInputVariablesParameter.Value.Value; } set { ScaleInputVariablesParameter.Value.Value = value; } } public double LogLambda { get { return LogLambdaParameter.Value.Value; } set { LogLambdaParameter.Value.Value = value; } } public double Beta { get { return BetaParameter.Value.Value; } set { BetaParameter.Value.Value = value; } } #endregion [StorableConstructor] private KernelRidgeRegression(StorableConstructorFlag deserializing) : base(deserializing) { } private KernelRidgeRegression(KernelRidgeRegression original, Cloner cloner) : base(original, cloner) { } public KernelRidgeRegression() { Problem = new RegressionProblem(); Parameters.Add(new ValueParameter(KernelParameterName, "The kernel", new GaussianKernel())); Parameters.Add(new FixedValueParameter(ScaleInputVariablesParameterName, "Set to true if the input variables should be scaled to the interval [0..1]", new BoolValue(true))); Parameters.Add(new FixedValueParameter(LambdaParameterName, "The log10-transformed weight for the regularization term lambda [-inf..+inf]. Small values produce more complex models, large values produce models with larger errors. Set to very small value (e.g. -1.0e15) for almost exact approximation", new DoubleValue(-2))); Parameters.Add(new FixedValueParameter(BetaParameterName, "The beta parameter for the kernel", new DoubleValue(2))); } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { } public override IDeepCloneable Clone(Cloner cloner) { return new KernelRidgeRegression(this, cloner); } protected override void Run(CancellationToken cancellationToken) { double rmsError, looCvRMSE; var kernel = Kernel; kernel.Beta = Beta; var solution = CreateRadialBasisRegressionSolution(Problem.ProblemData, kernel, Math.Pow(10, LogLambda), ScaleInputVariables, out rmsError, out looCvRMSE); Results.Add(new Result(SolutionResultName, "The kernel ridge regression solution.", solution)); Results.Add(new Result("RMSE (test)", "The root mean squared error of the solution on the test set.", new DoubleValue(rmsError))); Results.Add(new Result("RMSE (LOO-CV)", "The leave-one-out-cross-validation root mean squared error", new DoubleValue(looCvRMSE))); } public static IRegressionSolution CreateRadialBasisRegressionSolution(IRegressionProblemData problemData, ICovarianceFunction kernel, double lambda, bool scaleInputs, out double rmsError, out double looCvRMSE) { var model = new KernelRidgeRegressionModel(problemData.Dataset, problemData.TargetVariable, problemData.AllowedInputVariables, problemData.TrainingIndices, scaleInputs, kernel, lambda); rmsError = double.NaN; if (problemData.TestIndices.Any()) { rmsError = Math.Sqrt(model.GetEstimatedValues(problemData.Dataset, problemData.TestIndices) .Zip(problemData.TargetVariableTestValues, (a, b) => (a - b) * (a - b)) .Average()); } var solution = model.CreateRegressionSolution((IRegressionProblemData)problemData.Clone()); solution.Model.Name = "Kernel ridge regression model"; solution.Name = SolutionResultName; looCvRMSE = model.LooCvRMSE; return solution; } } }