#region License Information /* HeuristicLab * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using System.Threading; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence; using HeuristicLab.Problems.DataAnalysis; namespace HeuristicLab.Algorithms.DataAnalysis { /// /// 1R classification algorithm. /// [Item("OneR Classification", "A simple classification algorithm the searches the best single-variable split (does not support categorical features correctly). See R.C. Holte (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning. 11:63-91.")] [StorableType("91ed1a56-9638-4834-96eb-f4990e3e4fd8")] public sealed class OneR : FixedDataAnalysisAlgorithm { public IValueParameter MinBucketSizeParameter { get { return (IValueParameter)Parameters["MinBucketSize"]; } } [StorableConstructor] private OneR(StorableConstructorFlag deserializing) : base(deserializing) { } private OneR(OneR original, Cloner cloner) : base(original, cloner) { } public OneR() : base() { Parameters.Add(new ValueParameter("MinBucketSize", "Minimum size of a bucket for numerical values. (Except for the rightmost bucket)", new IntValue(6))); Problem = new ClassificationProblem(); } public override IDeepCloneable Clone(Cloner cloner) { return new OneR(this, cloner); } protected override void Run(CancellationToken cancellationToken) { var solution = CreateOneRSolution(Problem.ProblemData, MinBucketSizeParameter.Value.Value); Results.Add(new Result("OneR solution", "The 1R classifier.", solution)); } public static IClassificationSolution CreateOneRSolution(IClassificationProblemData problemData, int minBucketSize = 6) { var classValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices); var model1 = FindBestDoubleVariableModel(problemData, minBucketSize); var model2 = FindBestFactorModel(problemData); if (model1 == null && model2 == null) throw new InvalidProgramException("Could not create OneR solution"); else if (model1 == null) return new OneFactorClassificationSolution(model2, (IClassificationProblemData)problemData.Clone()); else if (model2 == null) return new OneRClassificationSolution(model1, (IClassificationProblemData)problemData.Clone()); else { var model1EstimatedValues = model1.GetEstimatedClassValues(problemData.Dataset, problemData.TrainingIndices); var model1NumCorrect = classValues.Zip(model1EstimatedValues, (a, b) => a.IsAlmost(b)).Count(e => e); var model2EstimatedValues = model2.GetEstimatedClassValues(problemData.Dataset, problemData.TrainingIndices); var model2NumCorrect = classValues.Zip(model2EstimatedValues, (a, b) => a.IsAlmost(b)).Count(e => e); if (model1NumCorrect > model2NumCorrect) { return new OneRClassificationSolution(model1, (IClassificationProblemData)problemData.Clone()); } else { return new OneFactorClassificationSolution(model2, (IClassificationProblemData)problemData.Clone()); } } } private static OneRClassificationModel FindBestDoubleVariableModel(IClassificationProblemData problemData, int minBucketSize = 6) { var bestClassified = 0; List bestSplits = null; string bestVariable = string.Empty; double bestMissingValuesClass = double.NaN; var classValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices); var allowedInputVariables = problemData.AllowedInputVariables.Where(problemData.Dataset.VariableHasType); if (!allowedInputVariables.Any()) return null; foreach (var variable in allowedInputVariables) { var inputValues = problemData.Dataset.GetDoubleValues(variable, problemData.TrainingIndices); var samples = inputValues.Zip(classValues, (i, v) => new Sample(i, v)).OrderBy(s => s.inputValue); var missingValuesDistribution = samples .Where(s => double.IsNaN(s.inputValue)).GroupBy(s => s.classValue) .ToDictionary(s => s.Key, s => s.Count()) .MaxItems(s => s.Value) .FirstOrDefault(); //calculate class distributions for all distinct inputValues List> classDistributions = new List>(); List thresholds = new List(); double lastValue = double.NaN; foreach (var sample in samples.Where(s => !double.IsNaN(s.inputValue))) { if (sample.inputValue > lastValue || double.IsNaN(lastValue)) { if (!double.IsNaN(lastValue)) thresholds.Add((lastValue + sample.inputValue) / 2); lastValue = sample.inputValue; classDistributions.Add(new Dictionary()); foreach (var classValue in problemData.ClassValues) classDistributions[classDistributions.Count - 1][classValue] = 0; } classDistributions[classDistributions.Count - 1][sample.classValue]++; } thresholds.Add(double.PositiveInfinity); var distribution = classDistributions[0]; var threshold = thresholds[0]; var splits = new List(); for (int i = 1; i < classDistributions.Count; i++) { var samplesInSplit = distribution.Max(d => d.Value); //join splits if there are too few samples in the split or the distributions has the same maximum class value as the current split if (samplesInSplit < minBucketSize || classDistributions[i].MaxItems(d => d.Value).Select(d => d.Key).Contains( distribution.MaxItems(d => d.Value).Select(d => d.Key).First())) { foreach (var classValue in classDistributions[i]) distribution[classValue.Key] += classValue.Value; threshold = thresholds[i]; } else { splits.Add(new Split(threshold, distribution.MaxItems(d => d.Value).Select(d => d.Key).First())); distribution = classDistributions[i]; threshold = thresholds[i]; } } splits.Add(new Split(double.PositiveInfinity, distribution.MaxItems(d => d.Value).Select(d => d.Key).First())); int correctClassified = 0; int splitIndex = 0; foreach (var sample in samples.Where(s => !double.IsNaN(s.inputValue))) { while (sample.inputValue >= splits[splitIndex].thresholdValue) splitIndex++; correctClassified += sample.classValue.IsAlmost(splits[splitIndex].classValue) ? 1 : 0; } correctClassified += missingValuesDistribution.Value; if (correctClassified > bestClassified) { bestClassified = correctClassified; bestSplits = splits; bestVariable = variable; bestMissingValuesClass = missingValuesDistribution.Value == 0 ? double.NaN : missingValuesDistribution.Key; } } //remove neighboring splits with the same class value for (int i = 0; i < bestSplits.Count - 1; i++) { if (bestSplits[i].classValue.IsAlmost(bestSplits[i + 1].classValue)) { bestSplits.Remove(bestSplits[i]); i--; } } var model = new OneRClassificationModel(problemData.TargetVariable, bestVariable, bestSplits.Select(s => s.thresholdValue).ToArray(), bestSplits.Select(s => s.classValue).ToArray(), bestMissingValuesClass); return model; } private static OneFactorClassificationModel FindBestFactorModel(IClassificationProblemData problemData) { var classValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices); var defaultClass = FindMostFrequentClassValue(classValues); // only select string variables var allowedInputVariables = problemData.AllowedInputVariables.Where(problemData.Dataset.VariableHasType); if (!allowedInputVariables.Any()) return null; OneFactorClassificationModel bestModel = null; var bestModelNumCorrect = 0; foreach (var variable in allowedInputVariables) { var variableValues = problemData.Dataset.GetStringValues(variable, problemData.TrainingIndices); var groupedClassValues = variableValues .Zip(classValues, (v, c) => new KeyValuePair(v, c)) .GroupBy(kvp => kvp.Key) .ToDictionary(g => g.Key, g => FindMostFrequentClassValue(g.Select(kvp => kvp.Value))); var model = new OneFactorClassificationModel(problemData.TargetVariable, variable, groupedClassValues.Select(kvp => kvp.Key).ToArray(), groupedClassValues.Select(kvp => kvp.Value).ToArray(), defaultClass); var modelEstimatedValues = model.GetEstimatedClassValues(problemData.Dataset, problemData.TrainingIndices); var modelNumCorrect = classValues.Zip(modelEstimatedValues, (a, b) => a.IsAlmost(b)).Count(e => e); if (modelNumCorrect > bestModelNumCorrect) { bestModelNumCorrect = modelNumCorrect; bestModel = model; } } return bestModel; } private static double FindMostFrequentClassValue(IEnumerable classValues) { return classValues.GroupBy(c => c).OrderByDescending(g => g.Count()).Select(g => g.Key).First(); } #region helper classes private class Split { public double thresholdValue; public double classValue; public Split(double thresholdValue, double classValue) { this.thresholdValue = thresholdValue; this.classValue = classValue; } } private class Sample { public double inputValue; public double classValue; public Sample(double inputValue, double classValue) { this.inputValue = inputValue; this.classValue = classValue; } } #endregion } }