#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Optimization; using HeuristicLab.Optimization.Operators; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.VehicleRouting.Encodings.Potvin; using HeuristicLab.Problems.VehicleRouting.Interfaces; using HeuristicLab.Problems.VehicleRouting.ProblemInstances; using HeuristicLab.Problems.VehicleRouting.Variants; namespace HeuristicLab.Problems.VehicleRouting { /// /// An operator which relinks paths between VRP solutions. /// [Item("VRPPathRelinker", "An operator which relinks paths between VRP solutions.")] [StorableType("F517983E-6AD2-4534-9876-C6ADCBF1F305")] public sealed class VRPPathRelinker : SingleObjectivePathRelinker, IGeneralVRPOperator, IStochasticOperator { #region Parameter properties public IValueParameter IterationsParameter { get { return (IValueParameter)Parameters["Iterations"]; } } public ILookupParameter ProblemInstanceParameter { get { return (ILookupParameter)Parameters["ProblemInstance"]; } } public ILookupParameter RandomParameter { get { return (ILookupParameter)Parameters["Random"]; } } public IValueParameter SampleSizeParameter { get { return (IValueParameter)Parameters["SampleSize"]; } } #endregion [StorableConstructor] private VRPPathRelinker(bool deserializing) : base(deserializing) { } private VRPPathRelinker(VRPPathRelinker original, Cloner cloner) : base(original, cloner) { } public VRPPathRelinker() : base() { Parameters.Add(new ValueParameter("Iterations", "The number of iterations the operator should perform.", new IntValue(50))); Parameters.Add(new LookupParameter("ProblemInstance", "The VRP problem instance")); Parameters.Add(new LookupParameter("Random", "The pseudo random number generator which should be used for stochastic manipulation operators.")); Parameters.Add(new ValueParameter("SampleSize", "The number of moves that should be executed.", new IntValue(10))); } public override IDeepCloneable Clone(Cloner cloner) { return new VRPPathRelinker(this, cloner); } public static ItemArray Apply(PotvinEncoding initiator, PotvinEncoding guide, PercentValue n, int sampleSize, int iterations, IRandom rand, IVRPProblemInstance problemInstance) { if (initiator == null || guide == null) throw new ArgumentException("Cannot relink path because one of the provided solutions or both are null."); double sigma = 1.5; double minPenalty = 0.001; double maxPenalty = 1000000000; var originalOverloadPenalty = new DoubleValue(); if (problemInstance is IHomogenousCapacitatedProblemInstance) originalOverloadPenalty.Value = (problemInstance as IHomogenousCapacitatedProblemInstance).OverloadPenalty.Value; var originalTardinessPenalty = new DoubleValue(); if (problemInstance is ITimeWindowedProblemInstance) originalTardinessPenalty.Value = (problemInstance as ITimeWindowedProblemInstance).TardinessPenalty.Value; PotvinEncoding current = MatchTours(initiator, guide, problemInstance); double currentSimilarity = VRPSimilarityCalculator.CalculateSimilarity(current, guide); IList solutions = new List(); int i = 0; while (i < iterations && !currentSimilarity.IsAlmost(1.0)) { var currentEval = problemInstance.Evaluate(current); currentSimilarity = VRPSimilarityCalculator.CalculateSimilarity(current, guide); if (currentSimilarity < 1.0) { for (int sample = 0; sample < sampleSize; sample++) { var next = current.Clone() as PotvinEncoding; int neighborhood = rand.Next(3); switch (neighborhood) { case 0: next = RouteBasedXOver(next, guide, rand, problemInstance); break; case 1: next = SequenceBasedXOver(next, guide, rand, problemInstance); break; case 2: GuidedRelocateMove(next, guide, rand); break; } next = MatchTours(next, guide, problemInstance); var nextEval = problemInstance.Evaluate(next); if ((nextEval.Quality < currentEval.Quality)) { current = next; solutions.Add(current); break; } } if (problemInstance is IHomogenousCapacitatedProblemInstance) { if (((CVRPEvaluation)currentEval).Overload > 0) { (problemInstance as IHomogenousCapacitatedProblemInstance).OverloadPenalty.Value = Math.Min(maxPenalty, (problemInstance as IHomogenousCapacitatedProblemInstance).OverloadPenalty.Value * sigma); } else { (problemInstance as IHomogenousCapacitatedProblemInstance).OverloadPenalty.Value = Math.Max(minPenalty, (problemInstance as IHomogenousCapacitatedProblemInstance).OverloadPenalty.Value * sigma); } } if (problemInstance is ITimeWindowedProblemInstance) { if (((CVRPTWEvaluation)currentEval).Tardiness > 0) { (problemInstance as ITimeWindowedProblemInstance).TardinessPenalty.Value = Math.Min(maxPenalty, (problemInstance as ITimeWindowedProblemInstance).TardinessPenalty.Value * sigma); } else { (problemInstance as ITimeWindowedProblemInstance).TardinessPenalty.Value = Math.Max(minPenalty, (problemInstance as ITimeWindowedProblemInstance).TardinessPenalty.Value / sigma); } } i++; } } if (problemInstance is IHomogenousCapacitatedProblemInstance) (problemInstance as IHomogenousCapacitatedProblemInstance).OverloadPenalty.Value = originalOverloadPenalty.Value; if (problemInstance is ITimeWindowedProblemInstance) (problemInstance as ITimeWindowedProblemInstance).TardinessPenalty.Value = originalTardinessPenalty.Value; return new ItemArray(ChooseSelection(solutions, n)); } private static IList ChooseSelection(IList solutions, PercentValue n) { IList selection = new List(); if (solutions.Count > 0) { int noSol = (int)(solutions.Count * n.Value); if (noSol <= 0) noSol++; double stepSize = (double)solutions.Count / (double)noSol; for (int i = 0; i < noSol; i++) selection.Add(solutions.ElementAt((int)((i + 1) * stepSize - stepSize * 0.5))); } return selection; } protected override ItemArray Relink(ItemArray parents, PercentValue n) { if (parents.Length != 2) throw new ArgumentException("The number of parents is not equal to 2."); if (!(parents[0] is PotvinEncoding)) parents[0] = PotvinEncoding.ConvertFrom(parents[0] as IVRPEncoding, ProblemInstanceParameter.ActualValue); if (!(parents[1] is PotvinEncoding)) parents[1] = PotvinEncoding.ConvertFrom(parents[1] as IVRPEncoding, ProblemInstanceParameter.ActualValue); return Apply(parents[0] as PotvinEncoding, parents[1] as PotvinEncoding, n, SampleSizeParameter.Value.Value, IterationsParameter.Value.Value, RandomParameter.ActualValue, ProblemInstanceParameter.ActualValue); } private static int MatchingCities(Tour tour1, Tour tour2) { return tour1.Stops.Intersect(tour2.Stops).Count(); } private static PotvinEncoding MatchTours(PotvinEncoding initiator, PotvinEncoding guide, IVRPProblemInstance problemInstance) { var result = new PotvinEncoding(problemInstance); var used = new List(); for (int i = 0; i < initiator.Tours.Count; i++) { used.Add(false); } for (int i = 0; i < guide.Tours.Count; i++) { int bestMatch = -1; int bestTour = -1; for (int j = 0; j < initiator.Tours.Count; j++) { if (!used[j]) { int match = MatchingCities(guide.Tours[i], initiator.Tours[j]); if (match > bestMatch) { bestMatch = match; bestTour = j; } } } if (bestTour != -1) { result.Tours.Add(initiator.Tours[bestTour]); used[bestTour] = true; } } for (int i = 0; i < initiator.Tours.Count; i++) { if (!used[i]) result.Tours.Add(initiator.Tours[i]); } return result; } #region moves public static PotvinEncoding RouteBasedXOver(PotvinEncoding initiator, PotvinEncoding guide, IRandom random, IVRPProblemInstance problemInstance) { return PotvinRouteBasedCrossover.Apply(random, initiator, guide, problemInstance, false); } public static PotvinEncoding SequenceBasedXOver(PotvinEncoding initiator, PotvinEncoding guide, IRandom random, IVRPProblemInstance problemInstance) { return PotvinSequenceBasedCrossover.Apply(random, initiator, guide, problemInstance, false); } public static void GuidedRelocateMove(PotvinEncoding initiator, PotvinEncoding guide, IRandom random) { List cities = new List(); foreach (Tour tour in initiator.Tours) { foreach (int city in tour.Stops) { Tour guideTour = guide.Tours.First(t => t.Stops.Contains(city)); if (guide.Tours.IndexOf(guideTour) != initiator.Tours.IndexOf(tour)) { cities.Add(city); } } } if (cities.Count == 0) { RelocateMove(initiator, random); } else { int city = cities[random.Next(cities.Count)]; Tour tour = initiator.Tours.First(t => t.Stops.Contains(city)); tour.Stops.Remove(city); Tour guideTour = guide.Tours.First(t => t.Stops.Contains(city)); int guideTourIndex = guide.Tours.IndexOf(guideTour); if (guideTourIndex < initiator.Tours.Count) { Tour tour2 = initiator.Tours[guideTourIndex]; int guideIndex = guideTour.Stops.IndexOf(city); if (guideIndex == 0) { tour2.Stops.Insert(0, city); } else { int predecessor = guideTour.Stops[guideIndex - 1]; int initIndex = tour2.Stops.IndexOf(predecessor); if (initIndex != -1) { tour2.Stops.Insert(initIndex + 1, city); } else { if (guideIndex == guideTour.Stops.Count - 1) { tour2.Stops.Insert(tour2.Stops.Count, city); } else { int sucessor = guideTour.Stops[guideIndex + 1]; initIndex = tour2.Stops.IndexOf(sucessor); if (initIndex != -1) { tour2.Stops.Insert(initIndex, city); } else { tour2.Stops.Insert(random.Next(tour2.Stops.Count + 1), city); } } } } } else { Tour tour2 = new Tour(); tour2.Stops.Add(city); initiator.Tours.Add(tour2); } if (tour.Stops.Count == 0) initiator.Tours.Remove(tour); } } public static void RelocateMove(PotvinEncoding individual, IRandom random) { int cities = individual.Cities; int city = 1 + random.Next(cities); Tour originalTour = individual.Tours.Find(t => t.Stops.Contains(city)); //consider creating new route individual.Tours.Add(new Tour()); int position = 1 + random.Next(cities + individual.Tours.Count - 1); if (position >= city) { position++; } int originalPosition = originalTour.Stops.IndexOf(city); originalTour.Stops.RemoveAt(originalPosition); Tour insertionTour; int insertionPosition; if (position <= cities) { insertionTour = individual.Tours.Find(t => t.Stops.Contains(position)); insertionPosition = insertionTour.Stops.IndexOf(position) + 1; } else { insertionTour = individual.Tours[position - cities - 1]; insertionPosition = 0; } insertionTour.Stops.Insert(insertionPosition, city); individual.Tours.RemoveAll(t => t.Stops.Count == 0); } #endregion } }