#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.VehicleRouting.Encodings.Potvin; namespace HeuristicLab.Problems.VehicleRouting { /// /// An operator which improves VRP solutions. /// [Item("VRPIntraRouteImprovementOperator", "An operator which improves VRP solutions.")] [StorableClass("01F7A3F4-9795-4789-B844-351045A2F29D")] public sealed class VRPIntraRouteImprovementOperator : VRPImprovementOperator { [StorableConstructor] private VRPIntraRouteImprovementOperator(bool deserializing) : base(deserializing) { } private VRPIntraRouteImprovementOperator(VRPIntraRouteImprovementOperator original, Cloner cloner) : base(original, cloner) { } public VRPIntraRouteImprovementOperator() : base() { } public override IDeepCloneable Clone(Cloner cloner) { return new VRPIntraRouteImprovementOperator(this, cloner); } protected override int Improve(PotvinEncoding solution) { int evaluatedSolutions = 0; var rand = RandomParameter.ActualValue; var instance = ProblemInstance; int sampleSize = SampleSizeParameter.Value.Value; int attempts = ImprovementAttemptsParameter.Value.Value; int customers = instance.Cities.Value; // store city-to-tour assignment and position of the city within the tour var tours = new Dictionary(); var position = new Dictionary(); foreach (Tour tour in solution.Tours) { for (int stop = 0; stop < tour.Stops.Count; stop++) { int city = tour.Stops[stop]; tours[city] = tour; position[city] = stop; } } for (int attempt = 0; attempt < attempts; attempt++) { for (int sample = 0; sample < sampleSize; sample++) { int chosenCust = 1 + rand.Next(customers); var custTour = tours[chosenCust]; double beforeQuality = instance.EvaluateTour(custTour, solution).Quality; evaluatedSolutions++; custTour.Stops.RemoveAt(position[chosenCust]); int place = solution.FindBestInsertionPlace(custTour, chosenCust); evaluatedSolutions += custTour.Stops.Count; custTour.Stops.Insert(place, chosenCust); if (place != position[chosenCust]) { double afterQuality = instance.EvaluateTour(custTour, solution).Quality; if (afterQuality > beforeQuality) { // revert move custTour.Stops.RemoveAt(place); custTour.Stops.Insert(position[chosenCust], chosenCust); } else { // accept move and update positions of the cities within the tour for (int stop = 0; stop < custTour.Stops.Count; stop++) { int city = custTour.Stops[stop]; position[city] = stop; } break; } } } } return evaluatedSolutions; } } }