#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using System.Collections.Generic; using HeuristicLab.Data; using System; using HeuristicLab.Parameters; using HeuristicLab.Problems.VehicleRouting.ProblemInstances; using HeuristicLab.Problems.VehicleRouting.Interfaces; namespace HeuristicLab.Problems.VehicleRouting.Encodings.Potvin { [Item("PotvinInsertionBasedCrossover", "The IBX crossover for VRP representations. It is implemented as described in Berger, J and Solois, M and Begin, R (1998). A hybrid genetic algorithm for the vehicle routing problem with time windows. LNCS 1418. Springer, London 114-127.")] [StorableType("F07D6203-DDB0-401E-A6E5-C2850EB8B5A6")] public sealed class PotvinInsertionBasedCrossover : PotvinCrossover { public IValueParameter Length { get { return (IValueParameter)Parameters["Length"]; } } [StorableConstructor] private PotvinInsertionBasedCrossover(bool deserializing) : base(deserializing) { } private PotvinInsertionBasedCrossover(PotvinInsertionBasedCrossover original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new PotvinInsertionBasedCrossover(this, cloner); } public PotvinInsertionBasedCrossover() : base() { Parameters.Add(new ValueParameter("Length", "The maximum length of the replaced route.", new IntValue(1))); } private static int SelectRandomTourBiasedByLength(IRandom random, PotvinEncoding individual) { int tourIndex = -1; double sum = 0.0; double[] probabilities = new double[individual.Tours.Count]; for (int i = 0; i < individual.Tours.Count; i++) { probabilities[i] = 1.0 / ((double)individual.Tours[i].Stops.Count / (double)individual.Cities); sum += probabilities[i]; } double rand = random.NextDouble() * sum; double cumulatedProbabilities = 0.0; int index = 0; while (tourIndex == -1 && index < probabilities.Length) { if (cumulatedProbabilities <= rand && rand <= cumulatedProbabilities + probabilities[index]) tourIndex = index; cumulatedProbabilities += probabilities[index]; index++; } return tourIndex; } private double CalculateCentroidDistance(Tour t1, Tour t2, IVRPProblemInstance instance) { double xSum = 0; double ySum = 0; double c1X, c1Y, c2X, c2Y; for (int i = 0; i < t1.Stops.Count; i++) { xSum += instance.GetCoordinates(t1.Stops[i])[0]; ySum += instance.GetCoordinates(t1.Stops[i])[1]; } c1X = xSum / t1.Stops.Count; c1Y = ySum / t1.Stops.Count; for (int i = 0; i < t2.Stops.Count; i++) { xSum += instance.GetCoordinates(t2.Stops[i])[0]; ySum += instance.GetCoordinates(t2.Stops[i])[1]; } c2X = xSum / t1.Stops.Count; c2Y = ySum / t1.Stops.Count; return Math.Sqrt( (c1X - c2X) * (c1X - c2X) + (c1Y - c2Y) * (c1Y - c2Y)); } private double CalculateMeanCentroidDistance(Tour t1, IList tours, IVRPProblemInstance instance) { double sum = 0; for (int i = 0; i < tours.Count; i++) { sum += CalculateCentroidDistance(t1, tours[i], instance); } return sum / tours.Count; } private int SelectCityBiasedByNeighborDistance(IRandom random, Tour tour, IVRPEncoding solution) { int cityIndex = -1; double sum = 0.0; double[] probabilities = new double[tour.Stops.Count]; for (int i = 0; i < tour.Stops.Count; i++) { int next; if (i + 1 >= tour.Stops.Count) next = 0; else next = tour.Stops[i + 1]; double distance = ProblemInstance.GetDistance( tour.Stops[i], next, solution); int prev; if (i - 1 < 0) prev = 0; else prev = tour.Stops[i - 1]; distance += ProblemInstance.GetDistance( tour.Stops[i], prev, solution); probabilities[i] = distance; sum += probabilities[i]; } double rand = random.NextDouble() * sum; double cumulatedProbabilities = 0.0; int index = 0; while (cityIndex == -1 && index < probabilities.Length) { if (cumulatedProbabilities <= rand && rand <= cumulatedProbabilities + probabilities[index]) cityIndex = index; cumulatedProbabilities += probabilities[index]; index++; } return cityIndex; } private bool FindRouteInsertionPlace( PotvinEncoding individual, Tour tour, int city, bool allowInfeasible, out int place) { place = -1; if (tour.Stops.Contains(city)) return false; if (tour.Stops.Count == 0) { place = 0; return true; } double minDetour = 0; VRPEvaluation eval = ProblemInstance.EvaluateTour(tour, individual); bool originalFeasible = ProblemInstance.Feasible(eval); for (int i = 0; i <= tour.Stops.Count; i++) { bool feasible; double detour = ProblemInstance.GetInsertionCosts(eval, individual, city, 0, i, out feasible); if (feasible || allowInfeasible) { if (place < 0 || detour < minDetour) { place = i; minDetour = detour; } } } return place >= 0; } private ICollection GetUnrouted(PotvinEncoding solution, int cities) { HashSet undiscovered = new HashSet(); for (int i = 1; i <= cities; i++) { undiscovered.Add(i); } foreach (Tour tour in solution.Tours) { foreach (int city in tour.Stops) undiscovered.Remove(city); } return undiscovered; } protected override PotvinEncoding Crossover(IRandom random, PotvinEncoding parent1, PotvinEncoding parent2) { PotvinEncoding child = parent1.Clone() as PotvinEncoding; child.Tours.Clear(); bool allowInfeasible = AllowInfeasibleSolutions.Value.Value; List R1 = new List(); PotvinEncoding p1Clone = parent1.Clone() as PotvinEncoding; int length = Math.Min(Length.Value.Value, parent1.Tours.Count) + 1; int k = 1; if(length > 1) k = random.Next(1, length); for (int i = 0; i < k; i++) { int index = SelectRandomTourBiasedByLength(random, p1Clone); R1.Add(p1Clone.Tours[index]); p1Clone.Tours.RemoveAt(index); } foreach (Tour r1 in R1) { List R2 = new List(); double r = CalculateMeanCentroidDistance(r1, parent2.Tours, ProblemInstance); foreach (Tour tour in parent2.Tours) { if (CalculateCentroidDistance(r1, tour, ProblemInstance) <= r) { R2.AddRange(tour.Stops); } } Tour childTour = new Tour(); child.Tours.Add(childTour); childTour.Stops.AddRange(r1.Stops); //DESTROY - remove cities from r1 int removed = 1; if(r1.Stops.Count > 1) removed = random.Next(1, r1.Stops.Count + 1); for (int i = 0; i < removed; i++) { childTour.Stops.RemoveAt(SelectCityBiasedByNeighborDistance(random, childTour, child)); } //REPAIR - add cities from R2 int maxCount = 1; if(R2.Count > 1) maxCount = random.Next(1, Math.Min(5, R2.Count)); int count = 0; while (count < maxCount && R2.Count != 0) { int index = random.Next(R2.Count); int city = R2[index]; R2.RemoveAt(index); int place = -1; bool found = FindRouteInsertionPlace(child, childTour, city, allowInfeasible, out place); if (found) { childTour.Stops.Insert(place, city); if (!Repair(random, child, childTour, ProblemInstance, allowInfeasible)) { childTour.Stops.RemoveAt(place); } else { count++; } } } Repair(random, child, childTour, ProblemInstance, allowInfeasible); } for (int i = 0; i < p1Clone.Tours.Count; i++) { Tour childTour = p1Clone.Tours[i].Clone() as Tour; child.Tours.Add(childTour); Repair(random, child, childTour, ProblemInstance, allowInfeasible); } //route unrouted customers child.Unrouted.AddRange(GetUnrouted(child, ProblemInstance.Cities.Value)); bool success = RouteUnrouted(child, allowInfeasible); if (success || allowInfeasible) return child; else { if (random.NextDouble() < 0.5) return parent1.Clone() as PotvinEncoding; else return parent2.Clone() as PotvinEncoding; } } } }