#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.RealVectorEncoding;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.TestFunctions {
///
/// The Zakharov function is implemented as described in Hedar, A. & Fukushima, M. 2004. Heuristic pattern search and its hybridization with simulated annealing for nonlinear global optimization. Optimization Methods and Software 19, pp. 291-308, Taylor & Francis.
///
[Item("ZakharovEvaluator", "Evaluates the Zakharov function on a given point. The optimum of this function is 0 at the origin. It is implemented as described in Hedar, A. & Fukushima, M. 2004. Heuristic pattern search and its hybridization with simulated annealing for nonlinear global optimization. Optimization Methods and Software 19, pp. 291-308, Taylor & Francis.")]
[StorableClass("0AFD2007-4BFC-4D89-8A25-5C91D26DF437")]
public class ZakharovEvaluator : SingleObjectiveTestFunctionProblemEvaluator {
public override string FunctionName { get { return "Zakharov"; } }
///
/// Returns false as the Zakharov function is a minimization problem.
///
public override bool Maximization {
get { return false; }
}
///
/// Gets the optimum function value (0).
///
public override double BestKnownQuality {
get { return 0; }
}
///
/// Gets the lower and upper bound of the function.
///
public override DoubleMatrix Bounds {
get { return new DoubleMatrix(new double[,] { { -5, 10 } }); }
}
///
/// Gets the minimum problem size (1).
///
public override int MinimumProblemSize {
get { return 1; }
}
///
/// Gets the (theoretical) maximum problem size (2^31 - 1).
///
public override int MaximumProblemSize {
get { return int.MaxValue; }
}
public override RealVector GetBestKnownSolution(int dimension) {
return new RealVector(dimension);
}
[StorableConstructor]
protected ZakharovEvaluator(bool deserializing) : base(deserializing) { }
protected ZakharovEvaluator(ZakharovEvaluator original, Cloner cloner) : base(original, cloner) { }
public ZakharovEvaluator() : base() { }
public override IDeepCloneable Clone(Cloner cloner) {
return new ZakharovEvaluator(this, cloner);
}
///
/// Evaluates the test function for a specific .
///
/// N-dimensional point for which the test function should be evaluated.
/// The result value of the Zakharov function at the given point.
public static double Apply(RealVector point) {
int length = point.Length;
double s1 = 0;
double s2 = 0;
for (int i = 0; i < length; i++) {
s1 += point[i] * point[i];
s2 += 0.5 * i * point[i];
}
return s1 + (s2 * s2) + (s2 * s2 * s2 * s2);
}
///
/// Evaluates the test function for a specific .
///
/// Calls .
/// N-dimensional point for which the test function should be evaluated.
/// The result value of the Zakharov function at the given point.
public override double Evaluate(RealVector point) {
return Apply(point);
}
}
}