#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Linq;
using System.Security.Cryptography;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.BinaryVectorEncoding;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.PluginInfrastructure;
using HeuristicLab.Problems.Binary;
using HeuristicLab.Random;
namespace HeuristicLab.Problems.NK {
[Item("NK Landscape", "Represents an NK landscape optimization problem.")]
[Creatable(CreatableAttribute.Categories.CombinatorialProblems, Priority = 215)]
[StorableType("5D198285-9C08-4CFC-852A-6CAABCBF8681")]
public sealed class NKLandscape : BinaryProblem {
public override bool Maximization {
get { return false; }
}
#region Parameters
public IValueParameter GeneInteractionsParameter {
get { return (IValueParameter)Parameters["GeneInteractions"]; }
}
public IValueParameter SeedParameter {
get { return (IValueParameter)Parameters["ProblemSeed"]; }
}
public IValueParameter InteractionSeedParameter {
get { return (IValueParameter)Parameters["InteractionSeed"]; }
}
public IValueParameter NrOfInteractionsParameter {
get { return (IValueParameter)Parameters["NrOfInteractions"]; }
}
public IValueParameter NrOfFitnessComponentsParameter {
get { return (IValueParameter)Parameters["NrOfFitnessComponents"]; }
}
public IValueParameter QParameter {
get { return (IValueParameter)Parameters["Q"]; }
}
public IValueParameter PParameter {
get { return (IValueParameter)Parameters["P"]; }
}
public IValueParameter WeightsParameter {
get { return (IValueParameter)Parameters["Weights"]; }
}
public IConstrainedValueParameter InteractionInitializerParameter {
get { return (IConstrainedValueParameter)Parameters["InteractionInitializer"]; }
}
public IConstrainedValueParameter WeightsInitializerParameter {
get { return (IConstrainedValueParameter)Parameters["WeightsInitializer"]; }
}
#endregion
#region Properties
public IInteractionInitializer InteractionInitializer {
get { return InteractionInitializerParameter.Value; }
}
public BoolMatrix GeneInteractions {
get { return GeneInteractionsParameter.Value; }
}
public DoubleArray Weights {
get { return WeightsParameter.Value; }
}
public IntValue InteractionSeed {
get { return InteractionSeedParameter.Value; }
}
public IntValue NrOfFitnessComponents {
get { return NrOfFitnessComponentsParameter.Value; }
}
public IntValue NrOfInteractions {
get { return NrOfInteractionsParameter.Value; }
}
public IWeightsInitializer WeightsInitializer {
get { return WeightsInitializerParameter.Value; }
}
public int Q {
get { return QParameter.Value.Value; }
}
public double P {
get { return PParameter.Value.Value; }
}
public IntValue Seed {
get { return SeedParameter.Value; }
}
#endregion
[Storable]
private MersenneTwister random;
[ThreadStatic]
private static HashAlgorithm hashAlgorithm;
[ThreadStatic]
private static HashAlgorithm hashAlgorithmP;
private static HashAlgorithm HashAlgorithm {
get {
if (hashAlgorithm == null) {
hashAlgorithm = HashAlgorithm.Create("MD5");
}
return hashAlgorithm;
}
}
private static HashAlgorithm HashAlgorithmP {
get {
if (hashAlgorithmP == null) {
hashAlgorithmP = HashAlgorithm.Create("SHA1");
}
return hashAlgorithmP;
}
}
[StorableConstructor]
private NKLandscape(bool deserializing) : base(deserializing) { }
private NKLandscape(NKLandscape original, Cloner cloner)
: base(original, cloner) {
random = (MersenneTwister)original.random.Clone(cloner);
RegisterEventHandlers();
}
public NKLandscape()
: base() {
random = new MersenneTwister();
Parameters.Add(new ValueParameter("GeneInteractions", "Every column gives the participating genes for each fitness component."));
Parameters.Add(new ValueParameter("ProblemSeed", "The seed used for the random number generator.", new IntValue(0)));
random.Reset(Seed.Value);
Parameters.Add(new ValueParameter("InteractionSeed", "The seed used for the hash function to generate interaction tables.", new IntValue(random.Next())));
Parameters.Add(new ValueParameter("NrOfFitnessComponents", "Number of fitness component functions. (nr of columns in the interaction column)", new IntValue(10)));
Parameters.Add(new ValueParameter("NrOfInteractions", "Number of genes interacting with each other. (nr of True values per column in the interaction matrix)", new IntValue(3)));
Parameters.Add(new ValueParameter("Q", "Number of allowed fitness values in the (virutal) random table, or zero.", new IntValue(0)));
Parameters.Add(new ValueParameter("P", "Probability of any entry in the (virtual) random table being zero.", new DoubleValue(0)));
Parameters.Add(new ValueParameter("Weights", "The weights for the component functions. If shorted, will be repeated.", new DoubleArray(new[] { 1.0 })));
Parameters.Add(new ConstrainedValueParameter("InteractionInitializer", "Initialize interactions within the component functions."));
Parameters.Add(new ConstrainedValueParameter("WeightsInitializer", "Operator to initialize the weights distribution."));
//allow just the standard NK[P,Q] formulations at the moment
WeightsParameter.Hidden = true;
InteractionInitializerParameter.Hidden = true;
WeightsInitializerParameter.Hidden = true;
EncodingParameter.Hidden = true;
InitializeInteractionInitializerParameter();
InitializeWeightsInitializerParameter();
InitializeOperators();
InitializeInteractions();
RegisterEventHandlers();
}
private void InitializeInteractionInitializerParameter() {
foreach (var initializer in ApplicationManager.Manager.GetInstances())
InteractionInitializerParameter.ValidValues.Add(initializer);
InteractionInitializerParameter.Value = InteractionInitializerParameter.ValidValues.First(v => v is RandomInteractionsInitializer);
}
private void InitializeWeightsInitializerParameter() {
foreach (var initializer in ApplicationManager.Manager.GetInstances())
WeightsInitializerParameter.ValidValues.Add(initializer);
WeightsInitializerParameter.Value = WeightsInitializerParameter.ValidValues.First(v => v is EqualWeightsInitializer);
}
public override IDeepCloneable Clone(Cloner cloner) {
return new NKLandscape(this, cloner);
}
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
RegisterEventHandlers();
}
private void RegisterEventHandlers() {
NrOfInteractionsParameter.ValueChanged += InteractionParameter_ValueChanged;
NrOfInteractionsParameter.Value.ValueChanged += InteractionParameter_ValueChanged;
NrOfFitnessComponentsParameter.ValueChanged += InteractionParameter_ValueChanged;
NrOfFitnessComponentsParameter.Value.ValueChanged += InteractionParameter_ValueChanged;
InteractionInitializerParameter.ValueChanged += InteractionParameter_ValueChanged;
WeightsInitializerParameter.ValueChanged += WeightsInitializerParameter_ValueChanged;
SeedParameter.ValueChanged += SeedParameter_ValueChanged;
SeedParameter.Value.ValueChanged += SeedParameter_ValueChanged;
RegisterInteractionInitializerParameterEvents();
RegisterWeightsParameterEvents();
}
private void RegisterWeightsParameterEvents() {
foreach (var vv in WeightsInitializerParameter.ValidValues) {
foreach (var p in vv.Parameters) {
if (p.ActualValue != null && p.ActualValue is IStringConvertibleValue) {
var v = (IStringConvertibleValue)p.ActualValue;
v.ValueChanged += WeightsInitializerParameter_ValueChanged;
}
}
}
}
private void RegisterInteractionInitializerParameterEvents() {
foreach (var vv in InteractionInitializerParameter.ValidValues) {
foreach (var p in vv.Parameters) {
if (p.ActualValue != null && p.ActualValue is IStringConvertibleValue) {
var v = (IStringConvertibleValue)p.ActualValue;
v.ValueChanged += InteractionParameter_ValueChanged;
} else if (p.ActualValue != null && p is IConstrainedValueParameter) {
((IConstrainedValueParameter)p).ValueChanged +=
InteractionParameter_ValueChanged;
}
}
}
}
protected override void LengthParameter_ValueChanged(object sender, EventArgs e) {
NrOfFitnessComponentsParameter.Value = new IntValue(Length);
}
private void SeedParameter_ValueChanged(object sender, EventArgs e) {
random.Reset(Seed.Value);
InteractionSeed.Value = random.Next();
InitializeInteractions();
}
private void WeightsInitializerParameter_ValueChanged(object sender, EventArgs e) {
InitializeWeights();
}
private void InteractionParameter_ValueChanged(object sender, EventArgs e) {
InitializeInteractions();
}
private void InitializeOperators() {
NKBitFlipMoveEvaluator nkEvaluator = new NKBitFlipMoveEvaluator();
Encoding.ConfigureOperator(nkEvaluator);
Operators.Add(nkEvaluator);
}
private void InitializeInteractions() {
if (InteractionInitializer != null)
GeneInteractionsParameter.Value = InteractionInitializer.InitializeInterations(
Length,
NrOfFitnessComponents.Value,
NrOfInteractions.Value, random);
}
private void InitializeWeights() {
if (WeightsInitializerParameter.Value != null)
WeightsParameter.Value = new DoubleArray(
WeightsInitializer.GetWeights(NrOfFitnessComponents.Value)
.ToArray());
}
#region Evaluation function
private static long Hash(long x, HashAlgorithm hashAlg) {
return BitConverter.ToInt64(hashAlg.ComputeHash(BitConverter.GetBytes(x), 0, 8), 0);
}
public static double F_i(long x, long i, long g_i, long seed, int q, double p) {
var hash = new Func(y => Hash(y, HashAlgorithm));
var fi = Math.Abs((double)hash((x & g_i) ^ hash(g_i ^ hash(i ^ seed)))) / long.MaxValue;
if (q > 0) { fi = Math.Round(fi * q) / q; }
if (p > 0) {
hash = y => Hash(y, HashAlgorithmP);
var r = Math.Abs((double)hash((x & g_i) ^ hash(g_i ^ hash(i ^ seed)))) / long.MaxValue;
fi = (r <= p) ? 0 : fi;
}
return fi;
}
private static double F(long x, long[] g, double[] w, long seed, ref double[] f_i, int q, double p) {
double value = 0;
for (int i = 0; i < g.Length; i++) {
f_i[i] = F_i(x, i, g[i], seed, q, p);
value += w[i % w.Length] * f_i[i];
}
return value;
}
public static long Encode(BinaryVector v) {
long x = 0;
for (int i = 0; i < 64 && i < v.Length; i++) {
x |= (v[i] ? (long)1 : (long)0) << i;
}
return x;
}
public static long[] Encode(BoolMatrix m) {
long[] x = new long[m.Columns];
for (int c = 0; c < m.Columns; c++) {
x[c] = 0;
for (int r = 0; r < 64 && r < m.Rows; r++) {
x[c] |= (m[r, c] ? (long)1 : (long)0) << r;
}
}
return x;
}
public static double[] Normalize(DoubleArray weights) {
double sum = 0;
double[] w = new double[weights.Length];
foreach (var v in weights) {
sum += Math.Abs(v);
}
for (int i = 0; i < weights.Length; i++) {
w[i] = Math.Abs(weights[i]) / sum;
}
return w;
}
public static double Evaluate(BinaryVector vector, BoolMatrix interactions, DoubleArray weights, int seed, out double[] f_i, int q, double p) {
long x = Encode(vector);
long[] g = Encode(interactions);
double[] w = Normalize(weights);
f_i = new double[interactions.Columns];
return F(x, g, w, (long)seed, ref f_i, q, p);
}
public override double Evaluate(BinaryVector vector, IRandom random) {
double[] f_i; //useful for debugging
double quality = Evaluate(vector, GeneInteractions, Weights, InteractionSeed.Value, out f_i, Q, P);
return quality;
}
#endregion
}
}