#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.PermutationEncoding; using HeuristicLab.Operators; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.LinearAssignment { [Item("BestLAPSolutionAnalyzer", "Analyzes the best solution found.")] [StorableType("95EF016B-D75D-4CFF-95C5-FA08DDD50B4F")] public class BestLAPSolutionAnalyzer : SingleSuccessorOperator, IAnalyzer, ISingleObjectiveOperator { public bool EnabledByDefault { get { return true; } } public ILookupParameter MaximizationParameter { get { return (ILookupParameter)Parameters["Maximization"]; } } public ILookupParameter CostsParameter { get { return (ILookupParameter)Parameters["Costs"]; } } public IValueLookupParameter RowNamesParameter { get { return (IValueLookupParameter)Parameters["RowNames"]; } } public IValueLookupParameter ColumnNamesParameter { get { return (IValueLookupParameter)Parameters["ColumnNames"]; } } public IScopeTreeLookupParameter AssignmentParameter { get { return (IScopeTreeLookupParameter)Parameters["Assignment"]; } } public IScopeTreeLookupParameter QualityParameter { get { return (IScopeTreeLookupParameter)Parameters["Quality"]; } } public ILookupParameter BestSolutionParameter { get { return (ILookupParameter)Parameters["BestSolution"]; } } public ILookupParameter BestKnownQualityParameter { get { return (ILookupParameter)Parameters["BestKnownQuality"]; } } public ILookupParameter> BestKnownSolutionsParameter { get { return (ILookupParameter>)Parameters["BestKnownSolutions"]; } } public ILookupParameter BestKnownSolutionParameter { get { return (ILookupParameter)Parameters["BestKnownSolution"]; } } public IValueLookupParameter ResultsParameter { get { return (IValueLookupParameter)Parameters["Results"]; } } [StorableConstructor] protected BestLAPSolutionAnalyzer(bool deserializing) : base(deserializing) { } protected BestLAPSolutionAnalyzer(BestLAPSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { } public BestLAPSolutionAnalyzer() : base() { Parameters.Add(new LookupParameter("Maximization", "True if the problem is a maximization problem.")); Parameters.Add(new LookupParameter("Costs", LinearAssignmentProblem.CostsDescription)); Parameters.Add(new ValueLookupParameter("RowNames", LinearAssignmentProblem.RowNamesDescription)); Parameters.Add(new ValueLookupParameter("ColumnNames", LinearAssignmentProblem.ColumnNamesDescription)); Parameters.Add(new ScopeTreeLookupParameter("Assignment", "The LAP solutions from which the best solution should be analyzed.")); Parameters.Add(new ScopeTreeLookupParameter("Quality", "The qualities of the LAP solutions which should be analyzed.")); Parameters.Add(new LookupParameter("BestSolution", "The best LAP solution.")); Parameters.Add(new ValueLookupParameter("Results", "The result collection where the best LAP solution should be stored.")); Parameters.Add(new LookupParameter("BestKnownQuality", "The quality of the best known solution of this LAP instance.")); Parameters.Add(new LookupParameter>("BestKnownSolutions", "The best known solutions (there may be multiple) of this LAP instance.")); Parameters.Add(new LookupParameter("BestKnownSolution", "The best known solution of this LAP instance.")); } public override IDeepCloneable Clone(Cloner cloner) { return new BestLAPSolutionAnalyzer(this, cloner); } public override IOperation Apply() { var costs = CostsParameter.ActualValue; var rowNames = RowNamesParameter.ActualValue; var columnNames = ColumnNamesParameter.ActualValue; var permutations = AssignmentParameter.ActualValue; var qualities = QualityParameter.ActualValue; var results = ResultsParameter.ActualValue; bool max = MaximizationParameter.ActualValue.Value; DoubleValue bestKnownQuality = BestKnownQualityParameter.ActualValue; var sorted = qualities.Select((x, index) => new { index, x.Value }).OrderBy(x => x.Value).ToArray(); if (max) sorted = sorted.Reverse().ToArray(); int i = sorted.First().index; if (bestKnownQuality == null || max && qualities[i].Value > bestKnownQuality.Value || !max && qualities[i].Value < bestKnownQuality.Value) { // if there isn't a best-known quality or we improved the best-known quality we'll add the current solution as best-known BestKnownQualityParameter.ActualValue = new DoubleValue(qualities[i].Value); BestKnownSolutionParameter.ActualValue = (Permutation)permutations[i].Clone(); BestKnownSolutionsParameter.ActualValue = new ItemSet(new PermutationEqualityComparer()); BestKnownSolutionsParameter.ActualValue.Add((Permutation)permutations[i].Clone()); } else if (bestKnownQuality.Value == qualities[i].Value) { // if we matched the best-known quality we'll try to set the best-known solution if it isn't null // and try to add it to the pool of best solutions if it is different if (BestKnownSolutionParameter.ActualValue == null) BestKnownSolutionParameter.ActualValue = (Permutation)permutations[i].Clone(); if (BestKnownSolutionsParameter.ActualValue == null) BestKnownSolutionsParameter.ActualValue = new ItemSet(new PermutationEqualityComparer()); foreach (var k in sorted) { // for each solution that we found check if it is in the pool of best-knowns if (!max && k.Value > qualities[i].Value || max && k.Value < qualities[i].Value) break; // stop when we reached a solution worse than the best-known quality Permutation p = permutations[k.index]; if (!BestKnownSolutionsParameter.ActualValue.Contains(p)) BestKnownSolutionsParameter.ActualValue.Add((Permutation)permutations[k.index].Clone()); } } LAPAssignment assignment = BestSolutionParameter.ActualValue; if (assignment == null) { assignment = new LAPAssignment(costs, rowNames, columnNames, (Permutation)permutations[i].Clone(), new DoubleValue(qualities[i].Value)); BestSolutionParameter.ActualValue = assignment; results.Add(new Result("Best LAP Solution", assignment)); } else { if (max && assignment.Quality.Value < qualities[i].Value || !max && assignment.Quality.Value > qualities[i].Value) { assignment.Costs = costs; assignment.Assignment = (Permutation)permutations[i].Clone(); assignment.Quality.Value = qualities[i].Value; if (rowNames != null) assignment.RowNames = rowNames; else assignment.RowNames = null; if (columnNames != null) assignment.ColumnNames = columnNames; else assignment.ColumnNames = null; } } return base.Apply(); } } }