#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.BinaryVectorEncoding; using HeuristicLab.Operators; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.Knapsack { /// /// A base class for operators which evaluate Knapsack solutions given in BinaryVector encoding. /// [Item("KnapsackEvaluator", "Evaluates solutions for the Knapsack problem.")] [StorableType("597BEB68-140C-4A73-A2D8-6E9173C1F386")] public class KnapsackEvaluator : InstrumentedOperator, IKnapsackEvaluator { public ILookupParameter QualityParameter { get { return (ILookupParameter)Parameters["Quality"]; } } public ILookupParameter SumWeightsParameter { get { return (ILookupParameter)Parameters["SumWeights"]; } } public ILookupParameter SumValuesParameter { get { return (ILookupParameter)Parameters["SumValues"]; } } public ILookupParameter AppliedPenaltyParameter { get { return (ILookupParameter)Parameters["AppliedPenalty"]; } } public ILookupParameter BinaryVectorParameter { get { return (ILookupParameter)Parameters["BinaryVector"]; } } public ILookupParameter KnapsackCapacityParameter { get { return (ILookupParameter)Parameters["KnapsackCapacity"]; } } public ILookupParameter PenaltyParameter { get { return (ILookupParameter)Parameters["Penalty"]; } } public ILookupParameter WeightsParameter { get { return (ILookupParameter)Parameters["Weights"]; } } public ILookupParameter ValuesParameter { get { return (ILookupParameter)Parameters["Values"]; } } [StorableConstructor] protected KnapsackEvaluator(bool deserializing) : base(deserializing) { } protected KnapsackEvaluator(KnapsackEvaluator original, Cloner cloner) : base(original, cloner) { } public KnapsackEvaluator() : base() { Parameters.Add(new LookupParameter("Quality", "The evaluated quality of the OneMax solution.")); Parameters.Add(new LookupParameter("SumWeights", "The evaluated quality of the OneMax solution.")); Parameters.Add(new LookupParameter("SumValues", "The evaluated quality of the OneMax solution.")); Parameters.Add(new LookupParameter("AppliedPenalty", "The evaluated quality of the OneMax solution.")); Parameters.Add(new LookupParameter("BinaryVector", "The OneMax solution given in path representation which should be evaluated.")); Parameters.Add(new LookupParameter("KnapsackCapacity", "Capacity of the Knapsack.")); Parameters.Add(new LookupParameter("Weights", "The weights of the items.")); Parameters.Add(new LookupParameter("Values", "The values of the items.")); Parameters.Add(new LookupParameter("Penalty", "The penalty value for each unit of overweight.")); } public override IDeepCloneable Clone(Cloner cloner) { return new KnapsackEvaluator(this, cloner); } public struct KnapsackEvaluation { public DoubleValue Quality; public DoubleValue SumWeights; public DoubleValue SumValues; public DoubleValue AppliedPenalty; } public static KnapsackEvaluation Apply(BinaryVector v, IntValue capacity, DoubleValue penalty, IntArray weights, IntArray values) { if (weights.Length != values.Length) throw new InvalidOperationException("The weights and values parameters of the Knapsack problem have different sizes"); KnapsackEvaluation result = new KnapsackEvaluation(); double quality = 0; int weight = 0; int value = 0; double appliedPenalty = 0; for (int i = 0; i < v.Length; i++) { if (v[i]) { weight += weights[i]; value += values[i]; } } if (weight > capacity.Value) { appliedPenalty = penalty.Value * (weight - capacity.Value); } quality = value - appliedPenalty; result.AppliedPenalty = new DoubleValue(appliedPenalty); result.SumWeights = new DoubleValue(weight); result.SumValues = new DoubleValue(value); result.Quality = new DoubleValue(quality); return result; } public sealed override IOperation InstrumentedApply() { BinaryVector v = BinaryVectorParameter.ActualValue; KnapsackEvaluation evaluation = Apply(BinaryVectorParameter.ActualValue, KnapsackCapacityParameter.ActualValue, PenaltyParameter.ActualValue, WeightsParameter.ActualValue, ValuesParameter.ActualValue); QualityParameter.ActualValue = evaluation.Quality; SumWeightsParameter.ActualValue = evaluation.SumWeights; SumValuesParameter.ActualValue = evaluation.SumValues; AppliedPenaltyParameter.ActualValue = evaluation.AppliedPenalty; return base.InstrumentedApply(); } } }