#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using HeuristicLab.Collections;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis {
[StorableType("AA614526-0A8F-4E2E-B143-E79929B44FD6")]
public abstract class DataAnalysisProblemData : ParameterizedNamedItem, IDataAnalysisProblemData {
protected const string DatasetParameterName = "Dataset";
protected const string InputVariablesParameterName = "InputVariables";
protected const string TrainingPartitionParameterName = "TrainingPartition";
protected const string TestPartitionParameterName = "TestPartition";
protected const string TransformationsParameterName = "Transformations";
#region parameter properites
public IFixedValueParameter DatasetParameter {
get { return (IFixedValueParameter)Parameters[DatasetParameterName]; }
}
public IFixedValueParameter> InputVariablesParameter {
get { return (IFixedValueParameter>)Parameters[InputVariablesParameterName]; }
}
public IFixedValueParameter TrainingPartitionParameter {
get { return (IFixedValueParameter)Parameters[TrainingPartitionParameterName]; }
}
public IFixedValueParameter TestPartitionParameter {
get { return (IFixedValueParameter)Parameters[TestPartitionParameterName]; }
}
public IFixedValueParameter> TransformationsParameter {
get { return (IFixedValueParameter>)Parameters[TransformationsParameterName]; }
}
#endregion
#region properties
protected bool isEmpty = false;
public bool IsEmpty {
get { return isEmpty; }
}
public IDataset Dataset {
get { return DatasetParameter.Value; }
}
public ICheckedItemList InputVariables {
get { return InputVariablesParameter.Value; }
}
public IEnumerable AllowedInputVariables {
get { return InputVariables.CheckedItems.Select(x => x.Value.Value); }
}
public IntRange TrainingPartition {
get { return TrainingPartitionParameter.Value; }
}
public IntRange TestPartition {
get { return TestPartitionParameter.Value; }
}
public virtual IEnumerable TrainingIndices {
get {
return Enumerable.Range(TrainingPartition.Start, Math.Max(0, TrainingPartition.End - TrainingPartition.Start))
.Where(IsTrainingSample);
}
}
public virtual IEnumerable TestIndices {
get {
return Enumerable.Range(TestPartition.Start, Math.Max(0, TestPartition.End - TestPartition.Start))
.Where(IsTestSample);
}
}
public IEnumerable Transformations {
get { return TransformationsParameter.Value; }
}
public virtual bool IsTrainingSample(int index) {
return index >= 0 && index < Dataset.Rows &&
TrainingPartition.Start <= index && index < TrainingPartition.End &&
(index < TestPartition.Start || TestPartition.End <= index);
}
public virtual bool IsTestSample(int index) {
return index >= 0 && index < Dataset.Rows &&
TestPartition.Start <= index && index < TestPartition.End;
}
#endregion
protected DataAnalysisProblemData(DataAnalysisProblemData original, Cloner cloner)
: base(original, cloner) {
isEmpty = original.isEmpty;
RegisterEventHandlers();
}
[StorableConstructor]
protected DataAnalysisProblemData(bool deserializing) : base(deserializing) { }
[StorableHook(HookType.AfterDeserialization)]
private void AfterDeserialization() {
if (!Parameters.ContainsKey(TransformationsParameterName)) {
Parameters.Add(new FixedValueParameter>(TransformationsParameterName, "", new ItemList().AsReadOnly()));
TransformationsParameter.Hidden = true;
}
RegisterEventHandlers();
}
protected DataAnalysisProblemData(IDataset dataset, IEnumerable allowedInputVariables, IEnumerable transformations = null) {
if (dataset == null) throw new ArgumentNullException("The dataset must not be null.");
if (allowedInputVariables == null) throw new ArgumentNullException("The allowedInputVariables must not be null.");
if (allowedInputVariables.Except(dataset.DoubleVariables).Any())
throw new ArgumentException("All allowed input variables must be present in the dataset and of type double.");
var inputVariables = new CheckedItemList(dataset.DoubleVariables.Select(x => new StringValue(x)));
foreach (StringValue x in inputVariables)
inputVariables.SetItemCheckedState(x, allowedInputVariables.Contains(x.Value));
int trainingPartitionStart = 0;
int trainingPartitionEnd = dataset.Rows / 2;
int testPartitionStart = dataset.Rows / 2;
int testPartitionEnd = dataset.Rows;
var transformationsList = new ItemList(transformations ?? Enumerable.Empty());
Parameters.Add(new FixedValueParameter(DatasetParameterName, "", (Dataset)dataset));
Parameters.Add(new FixedValueParameter>(InputVariablesParameterName, "", inputVariables.AsReadOnly()));
Parameters.Add(new FixedValueParameter(TrainingPartitionParameterName, "", new IntRange(trainingPartitionStart, trainingPartitionEnd)));
Parameters.Add(new FixedValueParameter(TestPartitionParameterName, "", new IntRange(testPartitionStart, testPartitionEnd)));
Parameters.Add(new FixedValueParameter>(TransformationsParameterName, "", transformationsList.AsReadOnly()));
TransformationsParameter.Hidden = true;
((ValueParameter)DatasetParameter).ReactOnValueToStringChangedAndValueItemImageChanged = false;
RegisterEventHandlers();
}
private void RegisterEventHandlers() {
DatasetParameter.ValueChanged += new EventHandler(Parameter_ValueChanged);
InputVariables.CheckedItemsChanged += new CollectionItemsChangedEventHandler>(InputVariables_CheckedItemsChanged);
TrainingPartition.ValueChanged += new EventHandler(Parameter_ValueChanged);
TestPartition.ValueChanged += new EventHandler(Parameter_ValueChanged);
TransformationsParameter.ValueChanged += new EventHandler(Parameter_ValueChanged);
}
private void InputVariables_CheckedItemsChanged(object sender, CollectionItemsChangedEventArgs> e) {
OnChanged();
}
private void Parameter_ValueChanged(object sender, EventArgs e) {
OnChanged();
}
public event EventHandler Changed;
protected virtual void OnChanged() {
var listeners = Changed;
if (listeners != null) listeners(this, EventArgs.Empty);
}
protected virtual bool IsProblemDataCompatible(IDataAnalysisProblemData problemData, out string errorMessage) {
errorMessage = string.Empty;
if (problemData == null) throw new ArgumentNullException("problemData", "The provided problemData is null.");
//check allowed input variables
StringBuilder message = new StringBuilder();
var variables = new HashSet(problemData.InputVariables.Select(x => x.Value));
foreach (var item in AllowedInputVariables) {
if (!variables.Contains(item))
message.AppendLine("Input variable '" + item + "' is not present in the new problem data.");
}
if (message.Length != 0) {
errorMessage = message.ToString();
return false;
}
return true;
}
public virtual void AdjustProblemDataProperties(IDataAnalysisProblemData problemData) {
DataAnalysisProblemData data = problemData as DataAnalysisProblemData;
if (data == null) throw new ArgumentException("The problem data is not a data analysis problem data. Instead a " + problemData.GetType().GetPrettyName() + " was provided.", "problemData");
string errorMessage;
if (!data.IsProblemDataCompatible(this, out errorMessage)) {
throw new InvalidOperationException(errorMessage);
}
foreach (var inputVariable in InputVariables) {
var variable = data.InputVariables.FirstOrDefault(i => i.Value == inputVariable.Value);
InputVariables.SetItemCheckedState(inputVariable, variable != null && data.InputVariables.ItemChecked(variable));
}
TrainingPartition.Start = TrainingPartition.End = 0;
TestPartition.Start = 0;
TestPartition.End = Dataset.Rows;
}
}
}