#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis {
///
/// Represents a classification data analysis solution
///
[StorableClass("B356DDF2-B07F-4211-AE74-0E7E47ABF154")]
public class ClassificationSolution : ClassificationSolutionBase {
protected readonly Dictionary evaluationCache;
[StorableConstructor]
protected ClassificationSolution(bool deserializing)
: base(deserializing) {
evaluationCache = new Dictionary();
}
protected ClassificationSolution(ClassificationSolution original, Cloner cloner)
: base(original, cloner) {
evaluationCache = new Dictionary(original.evaluationCache);
}
public ClassificationSolution(IClassificationModel model, IClassificationProblemData problemData)
: base(model, problemData) {
evaluationCache = new Dictionary(problemData.Dataset.Rows);
CalculateClassificationResults();
}
public override IDeepCloneable Clone(Cloner cloner) {
return new ClassificationSolution(this, cloner);
}
public override IEnumerable EstimatedClassValues {
get { return GetEstimatedClassValues(Enumerable.Range(0, ProblemData.Dataset.Rows)); }
}
public override IEnumerable EstimatedTrainingClassValues {
get { return GetEstimatedClassValues(ProblemData.TrainingIndices); }
}
public override IEnumerable EstimatedTestClassValues {
get { return GetEstimatedClassValues(ProblemData.TestIndices); }
}
public override IEnumerable GetEstimatedClassValues(IEnumerable rows) {
var rowsToEvaluate = rows.Except(evaluationCache.Keys);
var rowsEnumerator = rowsToEvaluate.GetEnumerator();
var valuesEnumerator = Model.GetEstimatedClassValues(ProblemData.Dataset, rowsToEvaluate).GetEnumerator();
while (rowsEnumerator.MoveNext() & valuesEnumerator.MoveNext()) {
evaluationCache.Add(rowsEnumerator.Current, valuesEnumerator.Current);
}
return rows.Select(row => evaluationCache[row]);
}
protected override void OnProblemDataChanged() {
evaluationCache.Clear();
base.OnProblemDataChanged();
}
protected override void OnModelChanged() {
evaluationCache.Clear();
base.OnModelChanged();
}
}
}