#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Data; using HeuristicLab.Optimization; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis.Trading { /// /// Abstract base class for trading data analysis solutions /// [StorableType("A3BE5C2D-6E05-4C0F-89CD-75EE47E12458")] public abstract class Solution : DataAnalysisSolution, ISolution { private const string TrainingSharpeRatioResultName = "Sharpe ratio (training)"; private const string TestSharpeRatioResultName = "Sharpe ratio (test)"; private const string TrainingProfitResultName = "Profit (training)"; private const string TestProfitResultName = "Profit (test)"; public new IModel Model { get { return (IModel)base.Model; } protected set { base.Model = value; } } public new IProblemData ProblemData { get { return (IProblemData)base.ProblemData; } protected set { base.ProblemData = value; } } public double TrainingSharpeRatio { get { return ((DoubleValue)this[TrainingSharpeRatioResultName].Value).Value; } private set { ((DoubleValue)this[TrainingSharpeRatioResultName].Value).Value = value; } } public double TestSharpeRatio { get { return ((DoubleValue)this[TestSharpeRatioResultName].Value).Value; } private set { ((DoubleValue)this[TestSharpeRatioResultName].Value).Value = value; } } public double TrainingProfit { get { return ((DoubleValue)this[TrainingProfitResultName].Value).Value; } private set { ((DoubleValue)this[TrainingProfitResultName].Value).Value = value; } } public double TestProfit { get { return ((DoubleValue)this[TestProfitResultName].Value).Value; } private set { ((DoubleValue)this[TestProfitResultName].Value).Value = value; } } [StorableConstructor] protected Solution(bool deserializing) : base(deserializing) { } protected Solution(Solution original, Cloner cloner) : base(original, cloner) { } public Solution(IModel model, IProblemData problemData) : base(model, problemData) { Add(new Result(TrainingSharpeRatioResultName, "Share ratio of the signals of the model on the training partition", new DoubleValue())); Add(new Result(TestSharpeRatioResultName, "Sharpe ratio of the signals of the model on the test partition", new DoubleValue())); Add(new Result(TrainingProfitResultName, "Profit of the model on the training partition", new DoubleValue())); Add(new Result(TestProfitResultName, "Profit of the model on the test partition", new DoubleValue())); } protected override void RecalculateResults() { CalculateTradingResults(); } protected void CalculateTradingResults() { double[] trainingSignals = TrainingSignals.ToArray(); // cache values IEnumerable trainingReturns = ProblemData.Dataset.GetDoubleValues(ProblemData.PriceChangeVariable, ProblemData.TrainingIndices); double[] testSignals = TestSignals.ToArray(); // cache values IEnumerable testReturns = ProblemData.Dataset.GetDoubleValues(ProblemData.PriceChangeVariable, ProblemData.TestIndices); OnlineCalculatorError errorState; double trainingSharpeRatio = OnlineSharpeRatioCalculator.Calculate(trainingReturns, trainingSignals, ProblemData.TransactionCosts, out errorState); TrainingSharpeRatio = errorState == OnlineCalculatorError.None ? trainingSharpeRatio : double.NaN; double testSharpeRatio = OnlineSharpeRatioCalculator.Calculate(testReturns, testSignals, ProblemData.TransactionCosts, out errorState); TestSharpeRatio = errorState == OnlineCalculatorError.None ? testSharpeRatio : double.NaN; double trainingProfit = OnlineProfitCalculator.Calculate(trainingReturns, trainingSignals, ProblemData.TransactionCosts, out errorState); TrainingProfit = errorState == OnlineCalculatorError.None ? trainingProfit : double.NaN; double testProfit = OnlineProfitCalculator.Calculate(testReturns, testSignals, ProblemData.TransactionCosts, out errorState); TestProfit = errorState == OnlineCalculatorError.None ? testProfit : double.NaN; } public virtual IEnumerable Signals { get { return GetSignals(Enumerable.Range(0, ProblemData.Dataset.Rows)); } } public virtual IEnumerable TrainingSignals { get { return GetSignals(ProblemData.TrainingIndices); } } public virtual IEnumerable TestSignals { get { return GetSignals(ProblemData.TestIndices); } } public virtual IEnumerable GetSignals(IEnumerable rows) { return Model.GetSignals(ProblemData.Dataset, rows); } } }