#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Data;
using HeuristicLab.Optimization;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis.Trading {
///
/// Abstract base class for trading data analysis solutions
///
[StorableType("A3BE5C2D-6E05-4C0F-89CD-75EE47E12458")]
public abstract class Solution : DataAnalysisSolution, ISolution {
private const string TrainingSharpeRatioResultName = "Sharpe ratio (training)";
private const string TestSharpeRatioResultName = "Sharpe ratio (test)";
private const string TrainingProfitResultName = "Profit (training)";
private const string TestProfitResultName = "Profit (test)";
public new IModel Model {
get { return (IModel)base.Model; }
protected set { base.Model = value; }
}
public new IProblemData ProblemData {
get { return (IProblemData)base.ProblemData; }
protected set { base.ProblemData = value; }
}
public double TrainingSharpeRatio {
get { return ((DoubleValue)this[TrainingSharpeRatioResultName].Value).Value; }
private set { ((DoubleValue)this[TrainingSharpeRatioResultName].Value).Value = value; }
}
public double TestSharpeRatio {
get { return ((DoubleValue)this[TestSharpeRatioResultName].Value).Value; }
private set { ((DoubleValue)this[TestSharpeRatioResultName].Value).Value = value; }
}
public double TrainingProfit {
get { return ((DoubleValue)this[TrainingProfitResultName].Value).Value; }
private set { ((DoubleValue)this[TrainingProfitResultName].Value).Value = value; }
}
public double TestProfit {
get { return ((DoubleValue)this[TestProfitResultName].Value).Value; }
private set { ((DoubleValue)this[TestProfitResultName].Value).Value = value; }
}
[StorableConstructor]
protected Solution(bool deserializing) : base(deserializing) { }
protected Solution(Solution original, Cloner cloner)
: base(original, cloner) {
}
public Solution(IModel model, IProblemData problemData)
: base(model, problemData) {
Add(new Result(TrainingSharpeRatioResultName, "Share ratio of the signals of the model on the training partition", new DoubleValue()));
Add(new Result(TestSharpeRatioResultName, "Sharpe ratio of the signals of the model on the test partition", new DoubleValue()));
Add(new Result(TrainingProfitResultName, "Profit of the model on the training partition", new DoubleValue()));
Add(new Result(TestProfitResultName, "Profit of the model on the test partition", new DoubleValue()));
}
protected override void RecalculateResults() {
CalculateTradingResults();
}
protected void CalculateTradingResults() {
double[] trainingSignals = TrainingSignals.ToArray(); // cache values
IEnumerable trainingReturns = ProblemData.Dataset.GetDoubleValues(ProblemData.PriceChangeVariable, ProblemData.TrainingIndices);
double[] testSignals = TestSignals.ToArray(); // cache values
IEnumerable testReturns = ProblemData.Dataset.GetDoubleValues(ProblemData.PriceChangeVariable, ProblemData.TestIndices);
OnlineCalculatorError errorState;
double trainingSharpeRatio = OnlineSharpeRatioCalculator.Calculate(trainingReturns, trainingSignals, ProblemData.TransactionCosts, out errorState);
TrainingSharpeRatio = errorState == OnlineCalculatorError.None ? trainingSharpeRatio : double.NaN;
double testSharpeRatio = OnlineSharpeRatioCalculator.Calculate(testReturns, testSignals, ProblemData.TransactionCosts, out errorState);
TestSharpeRatio = errorState == OnlineCalculatorError.None ? testSharpeRatio : double.NaN;
double trainingProfit = OnlineProfitCalculator.Calculate(trainingReturns, trainingSignals, ProblemData.TransactionCosts, out errorState);
TrainingProfit = errorState == OnlineCalculatorError.None ? trainingProfit : double.NaN;
double testProfit = OnlineProfitCalculator.Calculate(testReturns, testSignals, ProblemData.TransactionCosts, out errorState);
TestProfit = errorState == OnlineCalculatorError.None ? testProfit : double.NaN;
}
public virtual IEnumerable Signals {
get { return GetSignals(Enumerable.Range(0, ProblemData.Dataset.Rows)); }
}
public virtual IEnumerable TrainingSignals {
get { return GetSignals(ProblemData.TrainingIndices); }
}
public virtual IEnumerable TestSignals {
get { return GetSignals(ProblemData.TestIndices); }
}
public virtual IEnumerable GetSignals(IEnumerable rows) {
return Model.GetSignals(ProblemData.Dataset, rows);
}
}
}