#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Random;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
[StorableType("F1795C23-8338-4EDA-98AF-1690569C7AE3")]
public abstract class SymbolicDataAnalysisExpressionCrossover : SymbolicExpressionTreeCrossover, ISymbolicDataAnalysisExpressionCrossover where T : class, IDataAnalysisProblemData {
private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
private const string ProblemDataParameterName = "ProblemData";
private const string EvaluatorParameterName = "Evaluator";
private const string EvaluationPartitionParameterName = "EvaluationPartition";
private const string RelativeNumberOfEvaluatedSamplesParameterName = "RelativeNumberOfEvaluatedSamples";
private const string MaximumSymbolicExpressionTreeLengthParameterName = "MaximumSymbolicExpressionTreeLength";
private const string MaximumSymbolicExpressionTreeDepthParameterName = "MaximumSymbolicExpressionTreeDepth";
#region Parameter properties
public ILookupParameter SymbolicDataAnalysisTreeInterpreterParameter {
get { return (ILookupParameter)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; }
}
public IValueLookupParameter ProblemDataParameter {
get { return (IValueLookupParameter)Parameters[ProblemDataParameterName]; }
}
public ILookupParameter> EvaluatorParameter {
get { return (ILookupParameter>)Parameters[EvaluatorParameterName]; }
}
public IValueLookupParameter EvaluationPartitionParameter {
get { return (IValueLookupParameter)Parameters[EvaluationPartitionParameterName]; }
}
public IValueLookupParameter RelativeNumberOfEvaluatedSamplesParameter {
get { return (IValueLookupParameter)Parameters[RelativeNumberOfEvaluatedSamplesParameterName]; }
}
public IValueLookupParameter MaximumSymbolicExpressionTreeLengthParameter {
get { return (IValueLookupParameter)Parameters[MaximumSymbolicExpressionTreeLengthParameterName]; }
}
public IValueLookupParameter MaximumSymbolicExpressionTreeDepthParameter {
get { return (IValueLookupParameter)Parameters[MaximumSymbolicExpressionTreeDepthParameterName]; }
}
#endregion
#region Properties
public IntValue MaximumSymbolicExpressionTreeLength {
get { return MaximumSymbolicExpressionTreeLengthParameter.ActualValue; }
}
public IntValue MaximumSymbolicExpressionTreeDepth {
get { return MaximumSymbolicExpressionTreeDepthParameter.ActualValue; }
}
#endregion
[StorableConstructor]
protected SymbolicDataAnalysisExpressionCrossover(bool deserializing) : base(deserializing) { }
protected SymbolicDataAnalysisExpressionCrossover(SymbolicDataAnalysisExpressionCrossover original, Cloner cloner)
: base(original, cloner) {
}
public SymbolicDataAnalysisExpressionCrossover()
: base() {
Parameters.Add(new LookupParameter(SymbolicDataAnalysisTreeInterpreterParameterName, "The interpreter that should be used to calculate the output values of the symbolic data analysis tree."));
Parameters.Add(new LookupParameter>(EvaluatorParameterName, "The single objective solution evaluator"));
Parameters.Add(new ValueLookupParameter(ProblemDataParameterName, "The problem data on which the symbolic data analysis solution should be evaluated."));
Parameters.Add(new ValueLookupParameter(EvaluationPartitionParameterName, "The start index of the dataset partition on which the symbolic data analysis solution should be evaluated."));
Parameters.Add(new ValueLookupParameter(RelativeNumberOfEvaluatedSamplesParameterName, "The relative number of samples of the dataset partition, which should be randomly chosen for evaluation between the start and end index."));
Parameters.Add(new ValueLookupParameter(MaximumSymbolicExpressionTreeDepthParameterName, "The maximum tree depth."));
Parameters.Add(new ValueLookupParameter(MaximumSymbolicExpressionTreeLengthParameterName, "The maximum tree length."));
EvaluatorParameter.Hidden = true;
EvaluationPartitionParameter.Hidden = true;
SymbolicDataAnalysisTreeInterpreterParameter.Hidden = true;
ProblemDataParameter.Hidden = true;
RelativeNumberOfEvaluatedSamplesParameter.Hidden = true;
}
///
/// Creates a SymbolicExpressionTreeNode reusing the root and start symbols (since they are expensive to create).
///
///
///
///
///
///
protected static ISymbolicExpressionTree CreateTreeFromNode(IRandom random, ISymbolicExpressionTreeNode node, ISymbol rootSymbol, ISymbol startSymbol) {
var rootNode = new SymbolicExpressionTreeTopLevelNode(rootSymbol);
if (rootNode.HasLocalParameters) rootNode.ResetLocalParameters(random);
var startNode = new SymbolicExpressionTreeTopLevelNode(startSymbol);
if (startNode.HasLocalParameters) startNode.ResetLocalParameters(random);
startNode.AddSubtree(node);
rootNode.AddSubtree(startNode);
return new SymbolicExpressionTree(rootNode);
}
protected IEnumerable GenerateRowsToEvaluate() {
return GenerateRowsToEvaluate(RelativeNumberOfEvaluatedSamplesParameter.ActualValue.Value);
}
protected IEnumerable GenerateRowsToEvaluate(double percentageOfRows) {
IEnumerable rows;
int samplesStart = EvaluationPartitionParameter.ActualValue.Start;
int samplesEnd = EvaluationPartitionParameter.ActualValue.End;
int testPartitionStart = ProblemDataParameter.ActualValue.TestPartition.Start;
int testPartitionEnd = ProblemDataParameter.ActualValue.TestPartition.End;
if (samplesEnd < samplesStart) throw new ArgumentException("Start value is larger than end value.");
if (percentageOfRows.IsAlmost(1.0))
rows = Enumerable.Range(samplesStart, samplesEnd - samplesStart);
else {
int seed = RandomParameter.ActualValue.Next();
int count = (int)((samplesEnd - samplesStart) * percentageOfRows);
if (count == 0) count = 1;
rows = RandomEnumerable.SampleRandomNumbers(seed, samplesStart, samplesEnd, count);
}
return rows.Where(i => i < testPartitionStart || testPartitionEnd <= i);
}
protected static void Swap(CutPoint crossoverPoint, ISymbolicExpressionTreeNode selectedBranch) {
if (crossoverPoint.Child != null) {
// manipulate the tree of parent0 in place
// replace the branch in tree0 with the selected branch from tree1
crossoverPoint.Parent.RemoveSubtree(crossoverPoint.ChildIndex);
if (selectedBranch != null) {
crossoverPoint.Parent.InsertSubtree(crossoverPoint.ChildIndex, selectedBranch);
}
} else {
// child is null (additional child should be added under the parent)
if (selectedBranch != null) {
crossoverPoint.Parent.AddSubtree(selectedBranch);
}
}
}
}
}