#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis.Symbolic { /// /// Abstract base class for single objective symbolic data analysis analyzers. /// [StorableType("66A6913D-6011-4360-B752-AE86D8D12AF1")] public abstract class SymbolicDataAnalysisSingleObjectiveAnalyzer : SymbolicDataAnalysisAnalyzer, ISymbolicDataAnalysisSingleObjectiveAnalyzer { private const string QualityParameterName = "Quality"; private const string MaximizationParameterName = "Maximization"; private const string ApplyLinearScalingParameterName = "ApplyLinearScaling"; #region parameter properties public IScopeTreeLookupParameter QualityParameter { get { return (IScopeTreeLookupParameter)Parameters[QualityParameterName]; } } public ILookupParameter MaximizationParameter { get { return (ILookupParameter)Parameters[MaximizationParameterName]; } } public ILookupParameter ApplyLinearScalingParameter { get { return (ILookupParameter)Parameters[ApplyLinearScalingParameterName]; } } #endregion #region properties public ItemArray Quality { get { return QualityParameter.ActualValue; } } public BoolValue Maximization { get { return MaximizationParameter.ActualValue; } } #endregion [StorableConstructor] protected SymbolicDataAnalysisSingleObjectiveAnalyzer(bool deserializing) : base(deserializing) { } protected SymbolicDataAnalysisSingleObjectiveAnalyzer(SymbolicDataAnalysisSingleObjectiveAnalyzer original, Cloner cloner) : base(original, cloner) { } public SymbolicDataAnalysisSingleObjectiveAnalyzer() : base() { Parameters.Add(new ScopeTreeLookupParameter(QualityParameterName, "The qualities of the trees that should be analyzed.")); Parameters.Add(new LookupParameter(MaximizationParameterName, "The direction of optimization.")); Parameters.Add(new LookupParameter(ApplyLinearScalingParameterName, "Flag that indicates if the individual should be linearly scaled before evaluating.")); } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { if (Parameters.ContainsKey(ApplyLinearScalingParameterName) && !(Parameters[ApplyLinearScalingParameterName] is LookupParameter)) Parameters.Remove(ApplyLinearScalingParameterName); if (!Parameters.ContainsKey(ApplyLinearScalingParameterName)) Parameters.Add(new LookupParameter(ApplyLinearScalingParameterName, "Flag that indicates if the individual should be linearly scaled before evaluating.")); } } }