#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis { [StorableType("C7A691A3-2537-4C81-BF78-62D0378CD9AF")] [Item("SymbolicTimeSeriesPrognosisInterpreter", "Interpreter for symbolic expression trees including automatically defined functions.")] public sealed class SymbolicTimeSeriesPrognosisExpressionTreeInterpreter : SymbolicDataAnalysisExpressionTreeInterpreter, ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter { private const string TargetVariableParameterName = "TargetVariable"; public IFixedValueParameter TargetVariableParameter { get { return (IFixedValueParameter)Parameters[TargetVariableParameterName]; } } public string TargetVariable { get { return TargetVariableParameter.Value.Value; } set { TargetVariableParameter.Value.Value = value; } } [ThreadStatic] private static double[] targetVariableCache; [ThreadStatic] private static List invalidateCacheIndexes; [StorableConstructor] private SymbolicTimeSeriesPrognosisExpressionTreeInterpreter(bool deserializing) : base(deserializing) { } private SymbolicTimeSeriesPrognosisExpressionTreeInterpreter(SymbolicTimeSeriesPrognosisExpressionTreeInterpreter original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicTimeSeriesPrognosisExpressionTreeInterpreter(this, cloner); } internal SymbolicTimeSeriesPrognosisExpressionTreeInterpreter() : base("SymbolicTimeSeriesPrognosisInterpreter", "Interpreter for symbolic expression trees including automatically defined functions.") { Parameters.Add(new FixedValueParameter(TargetVariableParameterName)); TargetVariableParameter.Hidden = true; } public SymbolicTimeSeriesPrognosisExpressionTreeInterpreter(string targetVariable) : this() { TargetVariable = targetVariable; } // for each row several (=#horizon) future predictions public IEnumerable> GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, IDataset dataset, IEnumerable rows, int horizon) { return GetSymbolicExpressionTreeValues(tree, dataset, rows, rows.Select(row => horizon)); } private readonly object syncRoot = new object(); public IEnumerable> GetSymbolicExpressionTreeValues(ISymbolicExpressionTree tree, IDataset dataset, IEnumerable rows, IEnumerable horizons) { if (CheckExpressionsWithIntervalArithmetic) throw new NotSupportedException("Interval arithmetic is not yet supported in the symbolic data analysis interpreter."); if (targetVariableCache == null || targetVariableCache.GetLength(0) < dataset.Rows) targetVariableCache = dataset.GetDoubleValues(TargetVariable).ToArray(); if (invalidateCacheIndexes == null) invalidateCacheIndexes = new List(10); string targetVariable = TargetVariable; lock (syncRoot) { EvaluatedSolutions++; // increment the evaluated solutions counter } var state = PrepareInterpreterState(tree, dataset, targetVariableCache, TargetVariable); var rowsEnumerator = rows.GetEnumerator(); var horizonsEnumerator = horizons.GetEnumerator(); // produce a n-step forecast for all rows while (rowsEnumerator.MoveNext() & horizonsEnumerator.MoveNext()) { int row = rowsEnumerator.Current; int horizon = horizonsEnumerator.Current; double[] vProgs = new double[horizon]; for (int i = 0; i < horizon; i++) { int localRow = i + row; // create a local variable for the ref parameter vProgs[i] = Evaluate(dataset, ref localRow, state); targetVariableCache[localRow] = vProgs[i]; invalidateCacheIndexes.Add(localRow); state.Reset(); } yield return vProgs; int j = 0; foreach (var targetValue in dataset.GetDoubleValues(targetVariable, invalidateCacheIndexes)) { targetVariableCache[invalidateCacheIndexes[j]] = targetValue; j++; } invalidateCacheIndexes.Clear(); } if (rowsEnumerator.MoveNext() || horizonsEnumerator.MoveNext()) throw new ArgumentException("Number of elements in rows and horizon enumerations doesn't match."); } private static InterpreterState PrepareInterpreterState(ISymbolicExpressionTree tree, IDataset dataset, double[] targetVariableCache, string targetVariable) { Instruction[] code = SymbolicExpressionTreeCompiler.Compile(tree, OpCodes.MapSymbolToOpCode); int necessaryArgStackSize = 0; foreach (Instruction instr in code) { if (instr.opCode == OpCodes.Variable) { var variableTreeNode = (VariableTreeNode)instr.dynamicNode; if (variableTreeNode.VariableName == targetVariable) instr.data = targetVariableCache; else instr.data = dataset.GetReadOnlyDoubleValues(variableTreeNode.VariableName); } else if (instr.opCode == OpCodes.LagVariable) { var variableTreeNode = (LaggedVariableTreeNode)instr.dynamicNode; if (variableTreeNode.VariableName == targetVariable) instr.data = targetVariableCache; else instr.data = dataset.GetReadOnlyDoubleValues(variableTreeNode.VariableName); } else if (instr.opCode == OpCodes.VariableCondition) { var variableTreeNode = (VariableConditionTreeNode)instr.dynamicNode; if (variableTreeNode.VariableName == targetVariable) instr.data = targetVariableCache; else instr.data = dataset.GetReadOnlyDoubleValues(variableTreeNode.VariableName); } else if (instr.opCode == OpCodes.Call) { necessaryArgStackSize += instr.nArguments + 1; } } return new InterpreterState(code, necessaryArgStackSize); } } }