#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis.Symbolic.TimeSeriesPrognosis { /// /// An operator that analyzes the training best symbolic time-series prognosis solution for single objective symbolic time-series prognosis problems. /// [Item("SymbolicTimeSeriesPrognosisSingleObjectiveTrainingBestSolutionAnalyzer", "An operator that analyzes the training best symbolic time-series prognosis solution for single objective symbolic time-series prognosis problems.")] [StorableType("D7E8BA60-9435-4BE1-8E75-ADC18C4732B3")] public sealed class SymbolicTimeSeriesPrognosisSingleObjectiveTrainingBestSolutionAnalyzer : SymbolicDataAnalysisSingleObjectiveTrainingBestSolutionAnalyzer, ISymbolicDataAnalysisInterpreterOperator, ISymbolicDataAnalysisBoundedOperator { private const string ProblemDataParameterName = "ProblemData"; private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicDataAnalysisTreeInterpreter"; private const string EstimationLimitsParameterName = "EstimationLimits"; #region parameter properties public ILookupParameter ProblemDataParameter { get { return (ILookupParameter)Parameters[ProblemDataParameterName]; } } public ILookupParameter SymbolicDataAnalysisTreeInterpreterParameter { get { return (ILookupParameter)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; } } public IValueLookupParameter EstimationLimitsParameter { get { return (IValueLookupParameter)Parameters[EstimationLimitsParameterName]; } } #endregion [StorableConstructor] private SymbolicTimeSeriesPrognosisSingleObjectiveTrainingBestSolutionAnalyzer(bool deserializing) : base(deserializing) { } private SymbolicTimeSeriesPrognosisSingleObjectiveTrainingBestSolutionAnalyzer(SymbolicTimeSeriesPrognosisSingleObjectiveTrainingBestSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { } public SymbolicTimeSeriesPrognosisSingleObjectiveTrainingBestSolutionAnalyzer() : base() { Parameters.Add(new LookupParameter(ProblemDataParameterName, "The problem data for the symbolic regression solution.")); Parameters.Add(new LookupParameter(SymbolicDataAnalysisTreeInterpreterParameterName, "The symbolic time series prognosis interpreter for the symbolic expression tree.")); Parameters.Add(new ValueLookupParameter(EstimationLimitsParameterName, "The lower and upper limit for the estimated values produced by the symbolic regression model.")); } public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicTimeSeriesPrognosisSingleObjectiveTrainingBestSolutionAnalyzer(this, cloner); } protected override ISymbolicTimeSeriesPrognosisSolution CreateSolution(ISymbolicExpressionTree bestTree, double bestQuality) { var model = new SymbolicTimeSeriesPrognosisModel((ISymbolicExpressionTree)bestTree.Clone(), SymbolicDataAnalysisTreeInterpreterParameter.ActualValue as ISymbolicTimeSeriesPrognosisExpressionTreeInterpreter, EstimationLimitsParameter.ActualValue.Lower, EstimationLimitsParameter.ActualValue.Upper); if (ApplyLinearScalingParameter.ActualValue.Value) model.Scale(ProblemDataParameter.ActualValue); return new SymbolicTimeSeriesPrognosisSolution(model, (ITimeSeriesPrognosisProblemData)ProblemDataParameter.ActualValue.Clone()); } } }