#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using System.Linq; using HeuristicLab.Analysis; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression { [Item("SymbolicRegressionPhenotypicDiversityAnalyzer", "An analyzer which calculates diversity based on the phenotypic distance between trees")] [StorableType("BEF0E48C-CF40-453C-8110-C5A2F168679C")] public class SymbolicRegressionPhenotypicDiversityAnalyzer : PopulationSimilarityAnalyzer, ISymbolicDataAnalysisBoundedOperator, ISymbolicDataAnalysisInterpreterOperator, ISymbolicExpressionTreeAnalyzer { #region parameter names private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree"; private const string EvaluatedValuesParameterName = "EstimatedValues"; private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter"; private const string ProblemDataParameterName = "ProblemData"; private const string EstimationLimitsParameterName = "EstimationLimits"; #endregion #region parameter properties public IScopeTreeLookupParameter SymbolicExpressionTreeParameter { get { return (IScopeTreeLookupParameter)Parameters[SymbolicExpressionTreeParameterName]; } } private IScopeTreeLookupParameter EvaluatedValuesParameter { get { return (IScopeTreeLookupParameter)Parameters[EvaluatedValuesParameterName]; } } public ILookupParameter SymbolicDataAnalysisTreeInterpreterParameter { get { return (ILookupParameter)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; } } public IValueLookupParameter ProblemDataParameter { get { return (IValueLookupParameter)Parameters[ProblemDataParameterName]; } } public IValueLookupParameter EstimationLimitsParameter { get { return (IValueLookupParameter)Parameters[EstimationLimitsParameterName]; } } #endregion public SymbolicRegressionPhenotypicDiversityAnalyzer(IEnumerable validSimilarityCalculators) : base(validSimilarityCalculators) { #region add parameters Parameters.Add(new ScopeTreeLookupParameter(SymbolicExpressionTreeParameterName, "The symbolic expression trees.")); Parameters.Add(new ScopeTreeLookupParameter(EvaluatedValuesParameterName, "Intermediate estimated values to be saved in the scopes.")); Parameters.Add(new LookupParameter(SymbolicDataAnalysisTreeInterpreterParameterName, "The interpreter that should be used to calculate the output values of the symbolic data analysis tree.")); Parameters.Add(new ValueLookupParameter(ProblemDataParameterName, "The problem data on which the symbolic data analysis solution should be evaluated.")); Parameters.Add(new ValueLookupParameter(EstimationLimitsParameterName, "The upper and lower limit that should be used as cut off value for the output values of symbolic data analysis trees.")); #endregion UpdateCounterParameter.ActualName = "PhenotypicDiversityAnalyzerUpdateCounter"; DiversityResultName = "Phenotypic Diversity"; } [StorableConstructor] protected SymbolicRegressionPhenotypicDiversityAnalyzer(bool deserializing) : base(deserializing) { } public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicRegressionPhenotypicDiversityAnalyzer(this, cloner); } protected SymbolicRegressionPhenotypicDiversityAnalyzer(SymbolicRegressionPhenotypicDiversityAnalyzer original, Cloner cloner) : base(original, cloner) { } public override IOperation Apply() { int updateInterval = UpdateIntervalParameter.Value.Value; IntValue updateCounter = UpdateCounterParameter.ActualValue; if (updateCounter == null) { updateCounter = new IntValue(updateInterval); UpdateCounterParameter.ActualValue = updateCounter; } if (updateCounter.Value == updateInterval) { var trees = SymbolicExpressionTreeParameter.ActualValue; var interpreter = SymbolicDataAnalysisTreeInterpreterParameter.ActualValue; var ds = ProblemDataParameter.ActualValue.Dataset; var rows = ProblemDataParameter.ActualValue.TrainingIndices; var evaluatedValues = new ItemArray(trees.Select(t => new DoubleArray(interpreter.GetSymbolicExpressionTreeValues(t, ds, rows).ToArray()))); EvaluatedValuesParameter.ActualValue = evaluatedValues; } return base.Apply(); } } }