#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Linq; using HeuristicLab.Analysis; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression { /// /// An operator that optimizes the constants for the best symbolic expression tress in the current generation. /// [Item("ConstantOptimizationAnalyzer", "An operator that performs a constant optimization on the best symbolic expression trees.")] [StorableType("448FC073-3786-4F4A-A607-5076219315BA")] public sealed class ConstantOptimizationAnalyzer : SymbolicDataAnalysisSingleObjectiveAnalyzer, IStatefulItem { private const string PercentageOfBestSolutionsParameterName = "PercentageOfBestSolutions"; private const string ConstantOptimizationEvaluatorParameterName = "ConstantOptimizationOperator"; private const string DataTableNameConstantOptimizationImprovement = "Constant Optimization Improvement"; private const string DataRowNameMinimumImprovement = "Minimum improvement"; private const string DataRowNameMedianImprovement = "Median improvement"; private const string DataRowNameAverageImprovement = "Average improvement"; private const string DataRowNameMaximumImprovement = "Maximum improvement"; #region parameter properties public IFixedValueParameter PercentageOfBestSolutionsParameter { get { return (IFixedValueParameter)Parameters[PercentageOfBestSolutionsParameterName]; } } public IFixedValueParameter ConstantOptimizationEvaluatorParameter { get { return (IFixedValueParameter)Parameters[ConstantOptimizationEvaluatorParameterName]; } } #endregion #region properties public SymbolicRegressionConstantOptimizationEvaluator ConstantOptimizationEvaluator { get { return ConstantOptimizationEvaluatorParameter.Value; } } public double PercentageOfBestSolutions { get { return PercentageOfBestSolutionsParameter.Value.Value; } } private DataTable ConstantOptimizationImprovementDataTable { get { IResult result; ResultCollection.TryGetValue(DataTableNameConstantOptimizationImprovement, out result); if (result == null) return null; return (DataTable)result.Value; } } private DataRow MinimumImprovement { get { return ConstantOptimizationImprovementDataTable.Rows[DataRowNameMinimumImprovement]; } } private DataRow MedianImprovement { get { return ConstantOptimizationImprovementDataTable.Rows[DataRowNameMedianImprovement]; } } private DataRow AverageImprovement { get { return ConstantOptimizationImprovementDataTable.Rows[DataRowNameAverageImprovement]; } } private DataRow MaximumImprovement { get { return ConstantOptimizationImprovementDataTable.Rows[DataRowNameMaximumImprovement]; } } #endregion [StorableConstructor] private ConstantOptimizationAnalyzer(bool deserializing) : base(deserializing) { } private ConstantOptimizationAnalyzer(ConstantOptimizationAnalyzer original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new ConstantOptimizationAnalyzer(this, cloner); } public ConstantOptimizationAnalyzer() : base() { Parameters.Add(new FixedValueParameter(PercentageOfBestSolutionsParameterName, "The percentage of the top solutions which should be analyzed.", new PercentValue(0.1))); Parameters.Add(new FixedValueParameter(ConstantOptimizationEvaluatorParameterName, "The operator used to perform the constant optimization")); //Changed the ActualName of the EvaluationPartitionParameter so that it matches the parameter name of symbolic regression problems. ConstantOptimizationEvaluator.EvaluationPartitionParameter.ActualName = "FitnessCalculationPartition"; } private double[] qualitiesBeforeCoOp = null; private int[] scopeIndexes = null; void IStatefulItem.InitializeState() { qualitiesBeforeCoOp = null; scopeIndexes = null; } void IStatefulItem.ClearState() { qualitiesBeforeCoOp = null; scopeIndexes = null; } public override IOperation Apply() { //code executed in the first call of analyzer if (qualitiesBeforeCoOp == null) { double[] trainingQuality; // sort is ascending and we take the first n% => order so that best solutions are smallest // sort order is determined by maximization parameter if (Maximization.Value) { // largest values must be sorted first trainingQuality = Quality.Select(x => -x.Value).ToArray(); } else { // smallest values must be sorted first trainingQuality = Quality.Select(x => x.Value).ToArray(); } // sort trees by training qualities int topN = (int)Math.Max(trainingQuality.Length * PercentageOfBestSolutions, 1); scopeIndexes = Enumerable.Range(0, trainingQuality.Length).ToArray(); Array.Sort(trainingQuality, scopeIndexes); scopeIndexes = scopeIndexes.Take(topN).ToArray(); qualitiesBeforeCoOp = scopeIndexes.Select(x => Quality[x].Value).ToArray(); OperationCollection operationCollection = new OperationCollection(); operationCollection.Parallel = true; foreach (var scopeIndex in scopeIndexes) { var childOperation = ExecutionContext.CreateChildOperation(ConstantOptimizationEvaluator, ExecutionContext.Scope.SubScopes[scopeIndex]); operationCollection.Add(childOperation); } return new OperationCollection { operationCollection, ExecutionContext.CreateOperation(this) }; } //code executed to analyze results of constant optimization double[] qualitiesAfterCoOp = scopeIndexes.Select(x => Quality[x].Value).ToArray(); var qualityImprovement = qualitiesBeforeCoOp.Zip(qualitiesAfterCoOp, (b, a) => a - b).ToArray(); if (!ResultCollection.ContainsKey(DataTableNameConstantOptimizationImprovement)) { var dataTable = new DataTable(DataTableNameConstantOptimizationImprovement); ResultCollection.Add(new Result(DataTableNameConstantOptimizationImprovement, dataTable)); dataTable.VisualProperties.YAxisTitle = "R�"; dataTable.Rows.Add(new DataRow(DataRowNameMinimumImprovement)); MinimumImprovement.VisualProperties.StartIndexZero = true; dataTable.Rows.Add(new DataRow(DataRowNameMedianImprovement)); MedianImprovement.VisualProperties.StartIndexZero = true; dataTable.Rows.Add(new DataRow(DataRowNameAverageImprovement)); AverageImprovement.VisualProperties.StartIndexZero = true; dataTable.Rows.Add(new DataRow(DataRowNameMaximumImprovement)); MaximumImprovement.VisualProperties.StartIndexZero = true; } MinimumImprovement.Values.Add(qualityImprovement.Min()); MedianImprovement.Values.Add(qualityImprovement.Median()); AverageImprovement.Values.Add(qualityImprovement.Average()); MaximumImprovement.Values.Add(qualityImprovement.Max()); qualitiesBeforeCoOp = null; scopeIndexes = null; return base.Apply(); } } }