#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
[StorableClass("9DBEC80A-FB2C-4CF4-AEF3-E54BF688660F")]
[Item("SymbolicClassificationSolutionImpactValuesCalculator", "Calculate symbolic expression tree node impact values for classification problems.")]
public class SymbolicClassificationSolutionImpactValuesCalculator : SymbolicDataAnalysisSolutionImpactValuesCalculator {
public SymbolicClassificationSolutionImpactValuesCalculator() { }
protected SymbolicClassificationSolutionImpactValuesCalculator(SymbolicClassificationSolutionImpactValuesCalculator original, Cloner cloner)
: base(original, cloner) { }
public override IDeepCloneable Clone(Cloner cloner) {
return new SymbolicClassificationSolutionImpactValuesCalculator(this, cloner);
}
[StorableConstructor]
protected SymbolicClassificationSolutionImpactValuesCalculator(bool deserializing) : base(deserializing) { }
public override double CalculateReplacementValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable rows) {
var classificationModel = (ISymbolicClassificationModel)model;
var classificationProblemData = (IClassificationProblemData)problemData;
return CalculateReplacementValue(node, classificationModel.SymbolicExpressionTree, classificationModel.Interpreter, classificationProblemData.Dataset, rows);
}
public override double CalculateImpactValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable rows, double qualityForImpactsCalculation = double.NaN) {
double impactValue, replacementValue;
double newQualityForImpactsCalculation;
CalculateImpactAndReplacementValues(model, node, problemData, rows, out impactValue, out replacementValue, out newQualityForImpactsCalculation, qualityForImpactsCalculation);
return impactValue;
}
public override void CalculateImpactAndReplacementValues(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node,
IDataAnalysisProblemData problemData, IEnumerable rows, out double impactValue, out double replacementValue, out double newQualityForImpactsCalculation,
double qualityForImpactsCalculation = Double.NaN) {
var classificationModel = (ISymbolicClassificationModel)model;
var classificationProblemData = (IClassificationProblemData)problemData;
if (double.IsNaN(qualityForImpactsCalculation))
qualityForImpactsCalculation = CalculateQualityForImpacts(classificationModel, classificationProblemData, rows);
replacementValue = CalculateReplacementValue(classificationModel, node, classificationProblemData, rows);
var constantNode = new ConstantTreeNode(new Constant()) { Value = replacementValue };
var cloner = new Cloner();
var tempModel = cloner.Clone(classificationModel);
var tempModelNode = (ISymbolicExpressionTreeNode)cloner.GetClone(node);
var tempModelParentNode = tempModelNode.Parent;
int i = tempModelParentNode.IndexOfSubtree(tempModelNode);
tempModelParentNode.RemoveSubtree(i);
tempModelParentNode.InsertSubtree(i, constantNode);
OnlineCalculatorError errorState;
var dataset = classificationProblemData.Dataset;
var targetClassValues = dataset.GetDoubleValues(classificationProblemData.TargetVariable, rows);
var estimatedClassValues = tempModel.GetEstimatedClassValues(dataset, rows);
newQualityForImpactsCalculation = OnlineAccuracyCalculator.Calculate(targetClassValues, estimatedClassValues, out errorState);
if (errorState != OnlineCalculatorError.None) newQualityForImpactsCalculation = 0.0;
impactValue = qualityForImpactsCalculation - newQualityForImpactsCalculation;
}
public static double CalculateQualityForImpacts(ISymbolicClassificationModel model, IClassificationProblemData problemData, IEnumerable rows) {
OnlineCalculatorError errorState;
var dataset = problemData.Dataset;
var targetClassValues = dataset.GetDoubleValues(problemData.TargetVariable, rows);
var originalClassValues = model.GetEstimatedClassValues(dataset, rows);
var qualityForImpactsCalculation = OnlineAccuracyCalculator.Calculate(targetClassValues, originalClassValues, out errorState);
if (errorState != OnlineCalculatorError.None) qualityForImpactsCalculation = 0.0;
return qualityForImpactsCalculation;
}
}
}