#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification { [StorableClass("9DBEC80A-FB2C-4CF4-AEF3-E54BF688660F")] [Item("SymbolicClassificationSolutionImpactValuesCalculator", "Calculate symbolic expression tree node impact values for classification problems.")] public class SymbolicClassificationSolutionImpactValuesCalculator : SymbolicDataAnalysisSolutionImpactValuesCalculator { public SymbolicClassificationSolutionImpactValuesCalculator() { } protected SymbolicClassificationSolutionImpactValuesCalculator(SymbolicClassificationSolutionImpactValuesCalculator original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicClassificationSolutionImpactValuesCalculator(this, cloner); } [StorableConstructor] protected SymbolicClassificationSolutionImpactValuesCalculator(bool deserializing) : base(deserializing) { } public override double CalculateReplacementValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable rows) { var classificationModel = (ISymbolicClassificationModel)model; var classificationProblemData = (IClassificationProblemData)problemData; return CalculateReplacementValue(node, classificationModel.SymbolicExpressionTree, classificationModel.Interpreter, classificationProblemData.Dataset, rows); } public override double CalculateImpactValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable rows, double qualityForImpactsCalculation = double.NaN) { double impactValue, replacementValue; double newQualityForImpactsCalculation; CalculateImpactAndReplacementValues(model, node, problemData, rows, out impactValue, out replacementValue, out newQualityForImpactsCalculation, qualityForImpactsCalculation); return impactValue; } public override void CalculateImpactAndReplacementValues(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable rows, out double impactValue, out double replacementValue, out double newQualityForImpactsCalculation, double qualityForImpactsCalculation = Double.NaN) { var classificationModel = (ISymbolicClassificationModel)model; var classificationProblemData = (IClassificationProblemData)problemData; if (double.IsNaN(qualityForImpactsCalculation)) qualityForImpactsCalculation = CalculateQualityForImpacts(classificationModel, classificationProblemData, rows); replacementValue = CalculateReplacementValue(classificationModel, node, classificationProblemData, rows); var constantNode = new ConstantTreeNode(new Constant()) { Value = replacementValue }; var cloner = new Cloner(); var tempModel = cloner.Clone(classificationModel); var tempModelNode = (ISymbolicExpressionTreeNode)cloner.GetClone(node); var tempModelParentNode = tempModelNode.Parent; int i = tempModelParentNode.IndexOfSubtree(tempModelNode); tempModelParentNode.RemoveSubtree(i); tempModelParentNode.InsertSubtree(i, constantNode); OnlineCalculatorError errorState; var dataset = classificationProblemData.Dataset; var targetClassValues = dataset.GetDoubleValues(classificationProblemData.TargetVariable, rows); var estimatedClassValues = tempModel.GetEstimatedClassValues(dataset, rows); newQualityForImpactsCalculation = OnlineAccuracyCalculator.Calculate(targetClassValues, estimatedClassValues, out errorState); if (errorState != OnlineCalculatorError.None) newQualityForImpactsCalculation = 0.0; impactValue = qualityForImpactsCalculation - newQualityForImpactsCalculation; } public static double CalculateQualityForImpacts(ISymbolicClassificationModel model, IClassificationProblemData problemData, IEnumerable rows) { OnlineCalculatorError errorState; var dataset = problemData.Dataset; var targetClassValues = dataset.GetDoubleValues(problemData.TargetVariable, rows); var originalClassValues = model.GetEstimatedClassValues(dataset, rows); var qualityForImpactsCalculation = OnlineAccuracyCalculator.Calculate(targetClassValues, originalClassValues, out errorState); if (errorState != OnlineCalculatorError.None) qualityForImpactsCalculation = 0.0; return qualityForImpactsCalculation; } } }