#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding; using HeuristicLab.Optimization; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification { /// /// Represents a symbolic classification solution (model + data) and attributes of the solution like accuracy and complexity /// [StorableType("F6B528EF-A829-4867-B752-54CDFE9EBE82")] [Item(Name = "SymbolicClassificationSolution", Description = "Represents a symbolic classification solution (model + data) and attributes of the solution like accuracy and complexity.")] public sealed class SymbolicClassificationSolution : ClassificationSolution, ISymbolicClassificationSolution { private const string ModelLengthResultName = "ModelLength"; private const string ModelDepthResultName = "ModelDepth"; public new ISymbolicClassificationModel Model { get { return (ISymbolicClassificationModel)base.Model; } set { base.Model = value; } } ISymbolicDataAnalysisModel ISymbolicDataAnalysisSolution.Model { get { return (ISymbolicDataAnalysisModel)base.Model; } } public int ModelLength { get { return ((IntValue)this[ModelLengthResultName].Value).Value; } private set { ((IntValue)this[ModelLengthResultName].Value).Value = value; } } public int ModelDepth { get { return ((IntValue)this[ModelDepthResultName].Value).Value; } private set { ((IntValue)this[ModelDepthResultName].Value).Value = value; } } [StorableConstructor] private SymbolicClassificationSolution(bool deserializing) : base(deserializing) { } private SymbolicClassificationSolution(SymbolicClassificationSolution original, Cloner cloner) : base(original, cloner) { } public SymbolicClassificationSolution(ISymbolicClassificationModel model, IClassificationProblemData problemData) : base(model, problemData) { foreach (var node in model.SymbolicExpressionTree.Root.IterateNodesPrefix().OfType()) node.SetGrammar(null); Add(new Result(ModelLengthResultName, "Length of the symbolic classification model.", new IntValue())); Add(new Result(ModelDepthResultName, "Depth of the symbolic classification model.", new IntValue())); RecalculateResults(); } public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicClassificationSolution(this, cloner); } protected override void RecalculateResults() { base.RecalculateResults(); ModelLength = Model.SymbolicExpressionTree.Length; ModelDepth = Model.SymbolicExpressionTree.Depth; } } }