#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
using HeuristicLab.Operators;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Problems.ArtificialAnt.Analyzers {
///
/// An operator for analyzing the best ant trail of an artificial ant problem.
///
[Item("BestAntTrailAnalyzer", "An operator for analyzing the best ant trail of an artificial ant problem.")]
[StorableClass("3D72FA3E-4A4E-4FBA-A8EF-477D780C6658")]
public sealed class BestAntTrailAnalyzer : SingleSuccessorOperator, IAntTrailAnalyzer, ISingleObjectiveOperator {
public bool EnabledByDefault {
get { return true; }
}
public ILookupParameter WorldParameter {
get { return (ILookupParameter)Parameters["World"]; }
}
public ScopeTreeLookupParameter SymbolicExpressionTreeParameter {
get { return (ScopeTreeLookupParameter)Parameters["SymbolicExpressionTree"]; }
}
public ScopeTreeLookupParameter QualityParameter {
get { return (ScopeTreeLookupParameter)Parameters["Quality"]; }
}
public ILookupParameter MaxTimeStepsParameter {
get { return (ILookupParameter)Parameters["MaxTimeSteps"]; }
}
public ILookupParameter BestSolutionParameter {
get { return (ILookupParameter)Parameters["BestSolution"]; }
}
public ValueLookupParameter ResultsParameter {
get { return (ValueLookupParameter)Parameters["Results"]; }
}
public BestAntTrailAnalyzer()
: base() {
Parameters.Add(new LookupParameter("World", "The world with food items for the artificial ant."));
Parameters.Add(new ScopeTreeLookupParameter("SymbolicExpressionTree", "The artificial ant solutions from which the best solution should be visualized."));
Parameters.Add(new ScopeTreeLookupParameter("Quality", "The qualities of the artificial ant solutions which should be visualized."));
Parameters.Add(new LookupParameter("BestSolution", "The visual representation of the best ant trail."));
Parameters.Add(new LookupParameter("MaxTimeSteps", "The maximal time steps that the artificial ant has available to collect all food items."));
Parameters.Add(new ValueLookupParameter("Results", "The result collection where the best artificial ant solution should be stored."));
}
[StorableConstructor]
private BestAntTrailAnalyzer(bool deserializing) : base(deserializing) { }
private BestAntTrailAnalyzer(BestAntTrailAnalyzer original, Cloner cloner)
: base(original, cloner) {
}
public override IDeepCloneable Clone(Cloner cloner) {
return new BestAntTrailAnalyzer(this, cloner);
}
public override IOperation Apply() {
ItemArray expressions = SymbolicExpressionTreeParameter.ActualValue;
ItemArray qualities = QualityParameter.ActualValue;
BoolMatrix world = WorldParameter.ActualValue;
IntValue maxTimeSteps = MaxTimeStepsParameter.ActualValue;
ResultCollection results = ResultsParameter.ActualValue;
int i = qualities.Select((x, index) => new { index, x.Value }).OrderBy(x => -x.Value).First().index;
AntTrail antTrail = BestSolutionParameter.ActualValue;
if (antTrail == null) {
var bestAntTrail = new AntTrail(world, expressions[i], maxTimeSteps);
BestSolutionParameter.ActualValue = bestAntTrail;
results.Add(new Result("Best Artificial Ant Solution", bestAntTrail));
} else {
antTrail.World = world;
antTrail.SymbolicExpressionTree = expressions[i];
antTrail.MaxTimeSteps = maxTimeSteps;
results["Best Artificial Ant Solution"].Value = antTrail;
}
return base.Apply();
}
}
}