#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Operators;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Optimization.Operators {
[Item("WeightedParentsQualityComparator", "Compares the quality against that of its parents (assumes the parents are subscopes to the child scope). This operator works with any number of subscopes > 0.")]
[StorableType("175701CC-BBAC-4819-9CF3-DA97DFC72287")]
public class WeightedParentsQualityComparator : SingleSuccessorOperator, ISubScopesQualityComparator {
public IValueLookupParameter MaximizationParameter {
get { return (IValueLookupParameter)Parameters["Maximization"]; }
}
public ILookupParameter LeftSideParameter {
get { return (ILookupParameter)Parameters["LeftSide"]; }
}
public ILookupParameter> RightSideParameter {
get { return (ILookupParameter>)Parameters["RightSide"]; }
}
public ILookupParameter ResultParameter {
get { return (ILookupParameter)Parameters["Result"]; }
}
public ValueLookupParameter ComparisonFactorParameter {
get { return (ValueLookupParameter)Parameters["ComparisonFactor"]; }
}
[StorableConstructor]
protected WeightedParentsQualityComparator(bool deserializing) : base(deserializing) { }
protected WeightedParentsQualityComparator(WeightedParentsQualityComparator original, Cloner cloner) : base(original, cloner) { }
public WeightedParentsQualityComparator()
: base() {
Parameters.Add(new ValueLookupParameter("Maximization", "True if the problem is a maximization problem, false otherwise"));
Parameters.Add(new LookupParameter("LeftSide", "The quality of the child."));
Parameters.Add(new ScopeTreeLookupParameter("RightSide", "The qualities of the parents."));
Parameters.Add(new LookupParameter("Result", "The result of the comparison: True means Quality is better, False means it is worse than parents."));
Parameters.Add(new ValueLookupParameter("ComparisonFactor", "Determines if the quality should be compared to the better parent (1.0), to the worse (0.0) or to any linearly interpolated value between them."));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new WeightedParentsQualityComparator(this, cloner);
}
public override IOperation Apply() {
ItemArray rightQualities = RightSideParameter.ActualValue;
if (rightQualities.Length < 1) throw new InvalidOperationException(Name + ": No subscopes found.");
double compFact = ComparisonFactorParameter.ActualValue.Value;
bool maximization = MaximizationParameter.ActualValue.Value;
double leftQuality = LeftSideParameter.ActualValue.Value;
double threshold = 0;
#region Calculate threshold
if (rightQualities.Length == 2) { // this case will probably be used most often
double minQuality = Math.Min(rightQualities[0].Value, rightQualities[1].Value);
double maxQuality = Math.Max(rightQualities[0].Value, rightQualities[1].Value);
if (maximization)
threshold = minQuality + (maxQuality - minQuality) * compFact;
else
threshold = maxQuality - (maxQuality - minQuality) * compFact;
} else if (rightQualities.Length == 1) { // case for just one parent
threshold = rightQualities[0].Value;
} else { // general case extended to 3 or more parents
List sortedQualities = rightQualities.Select(x => x.Value).ToList();
sortedQualities.Sort();
double minimumQuality = sortedQualities.First();
double integral = 0;
for (int i = 0; i < sortedQualities.Count - 1; i++) {
integral += (sortedQualities[i] + sortedQualities[i + 1]) / 2.0; // sum of the trapezoid
}
integral -= minimumQuality * sortedQualities.Count;
if (integral == 0) threshold = sortedQualities[0]; // all qualities are equal
else {
double selectedArea = integral * (maximization ? compFact : (1 - compFact));
integral = 0;
for (int i = 0; i < sortedQualities.Count - 1; i++) {
double currentSliceArea = (sortedQualities[i] + sortedQualities[i + 1]) / 2.0;
double windowedSliceArea = currentSliceArea - minimumQuality;
if (windowedSliceArea == 0) continue;
integral += windowedSliceArea;
if (integral >= selectedArea) {
double factor = 1 - ((integral - selectedArea) / (windowedSliceArea));
threshold = sortedQualities[i] + (sortedQualities[i + 1] - sortedQualities[i]) * factor;
break;
}
}
}
}
#endregion
bool result = maximization && leftQuality > threshold || !maximization && leftQuality < threshold;
BoolValue resultValue = ResultParameter.ActualValue;
if (resultValue == null) {
ResultParameter.ActualValue = new BoolValue(result);
} else {
resultValue.Value = result;
}
return base.Apply();
}
}
}