#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Random; namespace HeuristicLab.Encodings.LinearLinkageEncoding { [Item("Lowest Index Max Crossover", "The Lowest Index Max Crossover (LIMX) is implemented as described in Ülker, Ö., Özcan, E., Korkmaz, E. E. 2007. Linear linkage encoding in grouping problems: applications on graph coloring and timetabling. In Practice and Theory of Automated Timetabling VI, pp. 347-363. Springer Berlin Heidelberg.")] [StorableType("3BA37E74-9FCE-4CB8-AA7C-5F6FC948D260")] public sealed class LowestIndexMaxCrossover : LinearLinkageCrossover { [StorableConstructor] private LowestIndexMaxCrossover(bool deserializing) : base(deserializing) { } private LowestIndexMaxCrossover(LowestIndexMaxCrossover original, Cloner cloner) : base(original, cloner) { } public LowestIndexMaxCrossover() { } public override IDeepCloneable Clone(Cloner cloner) { return new LowestIndexMaxCrossover(this, cloner); } public static LinearLinkage Apply(IRandom random, ItemArray parents) { var len = parents[0].Length; var child = new LinearLinkage(len); var remaining = new SortedSet(Enumerable.Range(0, len)); do { var groups = parents.Select(x => x.GetGroupForward(remaining.Min).Where(y => remaining.Contains(y)).ToList()).ToList(); var max = groups.Select((v, idx) => Tuple.Create(idx, v.Count)).MaxItems(x => x.Item2).SampleRandom(random).Item1; var i = groups[max][0]; for (var k = 1; k < groups[max].Count; k++) { child[i] = groups[max][k]; remaining.Remove(i); i = child[i]; } child[i] = i; remaining.Remove(i); } while (remaining.Count > 0); return child; } protected override LinearLinkage Cross(IRandom random, ItemArray parents) { return Apply(random, parents); } } }