#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Operators; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Analysis { /// /// An operator for analyzing the frequency of alleles. /// [Item("AlleleFrequencyAnalyzer", "An operator for analyzing the frequency of alleles.")] [StorableClass("4C00F2D1-F97B-4E86-ABD3-5960E9CFA8A7")] public abstract class AlleleFrequencyAnalyzer : SingleSuccessorOperator, IAnalyzer, ISingleObjectiveOperator where T : class, IItem { public virtual bool EnabledByDefault { get { return false; } } public LookupParameter MaximizationParameter { get { return (LookupParameter)Parameters["Maximization"]; } } public ScopeTreeLookupParameter SolutionParameter { get { return (ScopeTreeLookupParameter)Parameters["Solution"]; } } public ScopeTreeLookupParameter QualityParameter { get { return (ScopeTreeLookupParameter)Parameters["Quality"]; } } public LookupParameter BestKnownSolutionParameter { get { return (LookupParameter)Parameters["BestKnownSolution"]; } } public ValueLookupParameter ResultsParameter { get { return (ValueLookupParameter)Parameters["Results"]; } } public ValueParameter StoreHistoryParameter { get { return (ValueParameter)Parameters["StoreHistory"]; } } public ValueParameter UpdateIntervalParameter { get { return (ValueParameter)Parameters["UpdateInterval"]; } } public LookupParameter UpdateCounterParameter { get { return (LookupParameter)Parameters["UpdateCounter"]; } } [StorableConstructor] protected AlleleFrequencyAnalyzer(bool deserializing) : base(deserializing) { } protected AlleleFrequencyAnalyzer(AlleleFrequencyAnalyzer original, Cloner cloner) : base(original, cloner) { } public AlleleFrequencyAnalyzer() : base() { Parameters.Add(new LookupParameter("Maximization", "True if the problem is a maximization problem.")); Parameters.Add(new ScopeTreeLookupParameter("Solution", "The solutions whose alleles should be analyzed.")); Parameters.Add(new ScopeTreeLookupParameter("Quality", "The qualities of the solutions which should be analyzed.")); Parameters.Add(new LookupParameter("BestKnownSolution", "The best known solution.")); Parameters.Add(new ValueLookupParameter("Results", "The result collection where the allele frequency analysis results should be stored.")); Parameters.Add(new ValueParameter("StoreHistory", "True if the history of the allele frequency analysis should be stored.", new BoolValue(false))); Parameters.Add(new ValueParameter("UpdateInterval", "The interval in which the allele frequency analysis should be applied.", new IntValue(1))); Parameters.Add(new LookupParameter("UpdateCounter", "The value which counts how many times the operator was called since the last update.", "AlleleFrequencyAnalyzerUpdateCounter")); MaximizationParameter.Hidden = true; SolutionParameter.Hidden = true; QualityParameter.Hidden = true; BestKnownSolutionParameter.Hidden = true; ResultsParameter.Hidden = true; UpdateCounterParameter.Hidden = true; } #region Equality Comparers private class AlleleIdEqualityComparer : IEqualityComparer { public bool Equals(Allele x, Allele y) { return x.Id == y.Id; } public int GetHashCode(Allele obj) { return obj.Id.GetHashCode(); } } private class AlleleFrequencyIdEqualityComparer : IEqualityComparer { public bool Equals(AlleleFrequency x, AlleleFrequency y) { return x.Id == y.Id; } public int GetHashCode(AlleleFrequency obj) { return obj.Id.GetHashCode(); } } #endregion public override IOperation Apply() { int updateInterval = UpdateIntervalParameter.Value.Value; IntValue updateCounter = UpdateCounterParameter.ActualValue; if (updateCounter == null) { updateCounter = new IntValue(updateInterval); UpdateCounterParameter.ActualValue = updateCounter; } else updateCounter.Value++; if (updateCounter.Value == updateInterval) { updateCounter.Value = 0; bool max = MaximizationParameter.ActualValue.Value; ItemArray solutions = SolutionParameter.ActualValue; double[] qualities = QualityParameter.ActualValue.Select(x => x.Value).ToArray(); T bestKnownSolution = BestKnownSolutionParameter.ActualValue; bool storeHistory = StoreHistoryParameter.Value.Value; // calculate index of current best solution int bestIndex = -1; if (!max) { bestIndex = qualities .Select((x, i) => new { Index = i, Value = x }) .OrderBy(x => x.Value) .First().Index; } else { bestIndex = qualities .Select((x, i) => new { Index = i, Value = x }) .OrderByDescending(x => x.Value) .First().Index; } // calculate allels of current best and (if available) best known solution Allele[] bestAlleles = CalculateAlleles(solutions[bestIndex]); Allele[] bestKnownAlleles = null; if (bestKnownSolution != null) bestKnownAlleles = CalculateAlleles(bestKnownSolution); // calculate allele frequencies var frequencies = solutions.SelectMany((s, index) => CalculateAlleles(s).Select(a => new { Allele = a, Quality = qualities[index] })). GroupBy(x => x.Allele.Id). Select(x => new AlleleFrequency(x.Key, x.Count() / ((double)solutions.Length), x.Average(a => a.Allele.Impact), x.Average(a => a.Quality), bestKnownAlleles == null ? false : bestKnownAlleles.Any(a => a.Id == x.Key), bestAlleles.Any(a => a.Id == x.Key))); // calculate dummy allele frequencies of alleles of best known solution which did not occur if (bestKnownAlleles != null) { var bestKnownFrequencies = bestKnownAlleles.Select(x => new AlleleFrequency(x.Id, 0, x.Impact, 0, true, false)).Except(frequencies, new AlleleFrequencyIdEqualityComparer()); frequencies = frequencies.Concat(bestKnownFrequencies); } // fetch results collection ResultCollection results; if (!ResultsParameter.ActualValue.ContainsKey(Name + " Results")) { results = new ResultCollection(); ResultsParameter.ActualValue.Add(new Result(Name + " Results", results)); } else { results = (ResultCollection)ResultsParameter.ActualValue[Name + " Results"].Value; } // store allele frequencies AlleleFrequencyCollection frequenciesCollection = new AlleleFrequencyCollection(frequencies); if (!results.ContainsKey("Allele Frequencies")) results.Add(new Result("Allele Frequencies", frequenciesCollection)); else results["Allele Frequencies"].Value = frequenciesCollection; // store allele frequencies history if (storeHistory) { if (!results.ContainsKey("Allele Frequencies History")) { AlleleFrequencyCollectionHistory history = new AlleleFrequencyCollectionHistory(); history.Add(frequenciesCollection); results.Add(new Result("Allele Frequencies History", history)); } else { ((AlleleFrequencyCollectionHistory)results["Allele Frequencies History"].Value).Add(frequenciesCollection); } } // store alleles data table DataTable allelesTable; if (!results.ContainsKey("Alleles")) { allelesTable = new DataTable("Alleles"); allelesTable.VisualProperties.XAxisTitle = "Iteration"; allelesTable.VisualProperties.YAxisTitle = "Number of Alleles"; allelesTable.VisualProperties.SecondYAxisTitle = "Number of Alleles"; allelesTable.Rows.Add(new DataRow("Unique Alleles")); allelesTable.Rows["Unique Alleles"].VisualProperties.StartIndexZero = true; allelesTable.Rows.Add(new DataRow("Unique Alleles of Best Known Solution", null)); allelesTable.Rows["Unique Alleles of Best Known Solution"].VisualProperties.SecondYAxis = true; allelesTable.Rows["Unique Alleles of Best Known Solution"].VisualProperties.StartIndexZero = true; allelesTable.Rows.Add(new DataRow("Fixed Alleles", null)); allelesTable.Rows["Fixed Alleles"].VisualProperties.SecondYAxis = true; allelesTable.Rows["Fixed Alleles"].VisualProperties.StartIndexZero = true; allelesTable.Rows.Add(new DataRow("Fixed Alleles of Best Known Solution", null)); allelesTable.Rows["Fixed Alleles of Best Known Solution"].VisualProperties.SecondYAxis = true; allelesTable.Rows["Fixed Alleles of Best Known Solution"].VisualProperties.StartIndexZero = true; allelesTable.Rows.Add(new DataRow("Lost Alleles of Best Known Solution", null)); allelesTable.Rows["Lost Alleles of Best Known Solution"].VisualProperties.SecondYAxis = true; allelesTable.Rows["Lost Alleles of Best Known Solution"].VisualProperties.StartIndexZero = true; results.Add(new Result("Alleles", allelesTable)); } else { allelesTable = (DataTable)results["Alleles"].Value; } int fixedAllelesCount = frequenciesCollection.Where(x => x.Frequency == 1).Count(); var relevantAlleles = frequenciesCollection.Where(x => x.ContainedInBestKnownSolution); int relevantAllelesCount = relevantAlleles.Count(); int fixedRelevantAllelesCount = relevantAlleles.Where(x => x.Frequency == 1).Count(); int lostRelevantAllelesCount = relevantAlleles.Where(x => x.Frequency == 0).Count(); int uniqueRelevantAllelesCount = relevantAllelesCount - lostRelevantAllelesCount; allelesTable.Rows["Unique Alleles"].Values.Add(frequenciesCollection.Count); allelesTable.Rows["Unique Alleles of Best Known Solution"].Values.Add(uniqueRelevantAllelesCount); allelesTable.Rows["Fixed Alleles"].Values.Add(fixedAllelesCount); allelesTable.Rows["Fixed Alleles of Best Known Solution"].Values.Add(fixedRelevantAllelesCount); allelesTable.Rows["Lost Alleles of Best Known Solution"].Values.Add(lostRelevantAllelesCount); // store alleles values if (!results.ContainsKey("Unique Alleles")) results.Add(new Result("Unique Alleles", new DoubleValue(frequenciesCollection.Count))); else ((DoubleValue)results["Unique Alleles"].Value).Value = frequenciesCollection.Count; if (!results.ContainsKey("Unique Alleles of Best Known Solution")) results.Add(new Result("Unique Alleles of Best Known Solution", new DoubleValue(uniqueRelevantAllelesCount))); else ((DoubleValue)results["Unique Alleles of Best Known Solution"].Value).Value = uniqueRelevantAllelesCount; if (!results.ContainsKey("Fixed Alleles")) results.Add(new Result("Fixed Alleles", new DoubleValue(fixedAllelesCount))); else ((DoubleValue)results["Fixed Alleles"].Value).Value = fixedAllelesCount; if (!results.ContainsKey("Fixed Alleles of Best Known Solution")) results.Add(new Result("Fixed Alleles of Best Known Solution", new DoubleValue(fixedRelevantAllelesCount))); else ((DoubleValue)results["Fixed Alleles of Best Known Solution"].Value).Value = fixedRelevantAllelesCount; if (!results.ContainsKey("Lost Alleles of Best Known Solution")) results.Add(new Result("Lost Alleles of Best Known Solution", new DoubleValue(lostRelevantAllelesCount))); else ((DoubleValue)results["Lost Alleles of Best Known Solution"].Value).Value = lostRelevantAllelesCount; // calculate contained alleles of best known solution and relative quality if (bestKnownAlleles != null) { double qualityRange = Math.Abs(qualities.Max() - qualities.Min()); var points = solutions.Select((s, index) => new Point2D(CalculateAlleles(s).Intersect(bestKnownAlleles, new AlleleIdEqualityComparer()).Count(), Math.Abs(qualities[index] - qualities[bestIndex]) / qualityRange)); var avgContainedReleventAlleles = points.Select(x => x.X).Average(); var plot = new ScatterPlot("Contained Alleles of Best Known Solution and Relative Solution Qualtiy", null); plot.VisualProperties.XAxisTitle = "Contained Alleles of Best Known Solution"; plot.VisualProperties.YAxisTitle = "Relative Solution Quality"; plot.VisualProperties.XAxisMinimumAuto = false; plot.VisualProperties.XAxisMinimumFixedValue = 0.0; plot.VisualProperties.XAxisMaximumAuto = false; plot.VisualProperties.XAxisMaximumFixedValue = bestKnownAlleles.Length; plot.VisualProperties.YAxisMinimumAuto = false; plot.VisualProperties.YAxisMinimumFixedValue = 0.0; plot.VisualProperties.YAxisMaximumAuto = false; plot.VisualProperties.YAxisMaximumFixedValue = 1.0; var row = new ScatterPlotDataRow("Solutions of Current Generation", null, points); row.VisualProperties.PointStyle = ScatterPlotDataRowVisualProperties.ScatterPlotDataRowPointStyle.Circle; row.VisualProperties.PointSize = 5; plot.Rows.Add(row); if (!results.ContainsKey("Scatter Plot")) results.Add(new Result("Scatter Plot", plot)); else results["Scatter Plot"].Value = plot; if (storeHistory) { if (!results.ContainsKey("Scatter Plot History")) { results.Add(new Result("Scatter Plot History", new ScatterPlotHistory())); } ((ScatterPlotHistory)results["Scatter Plot History"].Value).Add(plot); } if (!allelesTable.Rows.ContainsKey("Average Contained Alleles of Best Known Solution")) { allelesTable.Rows.Add(new DataRow("Average Contained Alleles of Best Known Solution", null)); allelesTable.Rows["Average Contained Alleles of Best Known Solution"].VisualProperties.SecondYAxis = true; allelesTable.Rows["Average Contained Alleles of Best Known Solution"].VisualProperties.StartIndexZero = true; } allelesTable.Rows["Average Contained Alleles of Best Known Solution"].Values.Add(avgContainedReleventAlleles); if (!results.ContainsKey("Average Contained Alleles of Best Known Solution")) results.Add(new Result("Average Contained Alleles of Best Known Solution", new DoubleValue(avgContainedReleventAlleles))); else ((DoubleValue)results["Average Contained Alleles of Best Known Solution"].Value).Value = avgContainedReleventAlleles; } } return base.Apply(); } protected abstract Allele[] CalculateAlleles(T solution); } }