#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
* and the BEACON Center for the Study of Evolution in Action.
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.BinaryVectorEncoding;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.Binary;
namespace HeuristicLab.Algorithms.ParameterlessPopulationPyramid {
// This code is based off the publication
// B. W. Goldman and W. F. Punch, "Parameter-less Population Pyramid," GECCO, pp. 785–792, 2014
// and the original source code in C++11 available from: https://github.com/brianwgoldman/Parameter-less_Population_Pyramid
internal sealed class EvaluationTracker : BinaryProblem {
private readonly BinaryProblem problem;
private int maxEvaluations;
#region Properties
public double BestQuality {
get;
private set;
}
public int Evaluations {
get;
private set;
}
public int BestFoundOnEvaluation {
get;
private set;
}
public BinaryVector BestSolution {
get;
private set;
}
#endregion
[StorableConstructor]
private EvaluationTracker(bool deserializing) : base(deserializing) { }
private EvaluationTracker(EvaluationTracker original, Cloner cloner)
: base(original, cloner) {
problem = cloner.Clone(original.problem);
maxEvaluations = original.maxEvaluations;
BestQuality = original.BestQuality;
Evaluations = original.Evaluations;
BestFoundOnEvaluation = original.BestFoundOnEvaluation;
BestSolution = cloner.Clone(BestSolution);
}
public override IDeepCloneable Clone(Cloner cloner) {
return new EvaluationTracker(this, cloner);
}
public EvaluationTracker(BinaryProblem problem, int maxEvaluations) {
this.problem = problem;
this.maxEvaluations = maxEvaluations;
BestSolution = new BinaryVector(Length);
BestQuality = double.NaN;
Evaluations = 0;
BestFoundOnEvaluation = 0;
if (Parameters.ContainsKey("Maximization")) Parameters.Remove("Maximization");
Parameters.Add(new FixedValueParameter("Maximization", "Set to false if the problem should be minimized.", (BoolValue)new BoolValue(Maximization).AsReadOnly()) { Hidden = true });
}
public override double Evaluate(BinaryVector vector, IRandom random) {
if (Evaluations >= maxEvaluations) throw new OperationCanceledException("Maximum Evaluation Limit Reached");
Evaluations++;
double fitness = problem.Evaluate(vector, random);
if (double.IsNaN(BestQuality) || problem.IsBetter(fitness, BestQuality)) {
BestQuality = fitness;
BestSolution = (BinaryVector)vector.Clone();
BestFoundOnEvaluation = Evaluations;
}
return fitness;
}
public override int Length {
get { return problem.Length; }
set { problem.Length = value; }
}
public override bool Maximization {
get {
if (problem == null) return false;
return problem.Maximization;
}
}
public override bool IsBetter(double quality, double bestQuality) {
return problem.IsBetter(quality, bestQuality);
}
}
}