#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Operators; using HeuristicLab.Optimization.Operators; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Selection; namespace HeuristicLab.Algorithms.NSGA2 { /// /// An operator that represents the mainloop of the NSGA-II /// [Item("NSGA2MainLoop", "An operator which represents the main loop of the NSGA-II algorithm.")] [StorableClass("94AA6897-0ACA-4103-B504-620F1CE5D4E3")] public class NSGA2MainLoop : AlgorithmOperator { #region Parameter properties public ValueLookupParameter RandomParameter { get { return (ValueLookupParameter)Parameters["Random"]; } } public ValueLookupParameter MaximizationParameter { get { return (ValueLookupParameter)Parameters["Maximization"]; } } public ScopeTreeLookupParameter QualitiesParameter { get { return (ScopeTreeLookupParameter)Parameters["Qualities"]; } } public ValueLookupParameter PopulationSizeParameter { get { return (ValueLookupParameter)Parameters["PopulationSize"]; } } public ValueLookupParameter SelectorParameter { get { return (ValueLookupParameter)Parameters["Selector"]; } } public ValueLookupParameter CrossoverProbabilityParameter { get { return (ValueLookupParameter)Parameters["CrossoverProbability"]; } } public ValueLookupParameter CrossoverParameter { get { return (ValueLookupParameter)Parameters["Crossover"]; } } public ValueLookupParameter MutationProbabilityParameter { get { return (ValueLookupParameter)Parameters["MutationProbability"]; } } public ValueLookupParameter MutatorParameter { get { return (ValueLookupParameter)Parameters["Mutator"]; } } public ValueLookupParameter EvaluatorParameter { get { return (ValueLookupParameter)Parameters["Evaluator"]; } } public ValueLookupParameter MaximumGenerationsParameter { get { return (ValueLookupParameter)Parameters["MaximumGenerations"]; } } public ValueLookupParameter ResultsParameter { get { return (ValueLookupParameter)Parameters["Results"]; } } public ValueLookupParameter AnalyzerParameter { get { return (ValueLookupParameter)Parameters["Analyzer"]; } } public LookupParameter EvaluatedSolutionsParameter { get { return (LookupParameter)Parameters["EvaluatedSolutions"]; } } public IValueLookupParameter DominateOnEqualQualitiesParameter { get { return (ValueLookupParameter)Parameters["DominateOnEqualQualities"]; } } #endregion [StorableConstructor] protected NSGA2MainLoop(bool deserializing) : base(deserializing) { } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { // BackwardsCompatibility3.3 #region Backwards compatible code, remove with 3.4 if (!Parameters.ContainsKey("DominateOnEqualQualities")) Parameters.Add(new ValueLookupParameter("DominateOnEqualQualities", "Flag which determines wether solutions with equal quality values should be treated as dominated.")); #endregion } protected NSGA2MainLoop(NSGA2MainLoop original, Cloner cloner) : base(original, cloner) { } public NSGA2MainLoop() : base() { Initialize(); } private void Initialize() { #region Create parameters Parameters.Add(new ValueLookupParameter("Random", "A pseudo random number generator.")); Parameters.Add(new ValueLookupParameter("Maximization", "True if an objective should be maximized, or false if it should be minimized.")); Parameters.Add(new ScopeTreeLookupParameter("Qualities", "The vector of quality values.")); Parameters.Add(new ValueLookupParameter("PopulationSize", "The population size.")); Parameters.Add(new ValueLookupParameter("Selector", "The operator used to select solutions for reproduction.")); Parameters.Add(new ValueLookupParameter("CrossoverProbability", "The probability that the crossover operator is applied on a solution.")); Parameters.Add(new ValueLookupParameter("Crossover", "The operator used to cross solutions.")); Parameters.Add(new ValueLookupParameter("MutationProbability", "The probability that the mutation operator is applied on a solution.")); Parameters.Add(new ValueLookupParameter("Mutator", "The operator used to mutate solutions.")); Parameters.Add(new ValueLookupParameter("Evaluator", "The operator used to evaluate solutions. This operator is executed in parallel, if an engine is used which supports parallelization.")); Parameters.Add(new ValueLookupParameter("MaximumGenerations", "The maximum number of generations which should be processed.")); Parameters.Add(new ValueLookupParameter("Results", "The variable collection where results should be stored.")); Parameters.Add(new ValueLookupParameter("Analyzer", "The operator used to analyze each generation.")); Parameters.Add(new LookupParameter("EvaluatedSolutions", "The number of times solutions have been evaluated.")); Parameters.Add(new ValueLookupParameter("DominateOnEqualQualities", "Flag which determines wether solutions with equal quality values should be treated as dominated.")); #endregion #region Create operators VariableCreator variableCreator = new VariableCreator(); ResultsCollector resultsCollector1 = new ResultsCollector(); Placeholder analyzer1 = new Placeholder(); Placeholder selector = new Placeholder(); SubScopesProcessor subScopesProcessor1 = new SubScopesProcessor(); ChildrenCreator childrenCreator = new ChildrenCreator(); UniformSubScopesProcessor uniformSubScopesProcessor1 = new UniformSubScopesProcessor(); StochasticBranch crossoverStochasticBranch = new StochasticBranch(); Placeholder crossover = new Placeholder(); ParentCopyCrossover noCrossover = new ParentCopyCrossover(); StochasticBranch mutationStochasticBranch = new StochasticBranch(); Placeholder mutator = new Placeholder(); SubScopesRemover subScopesRemover = new SubScopesRemover(); UniformSubScopesProcessor uniformSubScopesProcessor2 = new UniformSubScopesProcessor(); Placeholder evaluator = new Placeholder(); SubScopesCounter subScopesCounter = new SubScopesCounter(); MergingReducer mergingReducer = new MergingReducer(); RankAndCrowdingSorter rankAndCrowdingSorter = new RankAndCrowdingSorter(); LeftSelector leftSelector = new LeftSelector(); RightReducer rightReducer = new RightReducer(); IntCounter intCounter = new IntCounter(); Comparator comparator = new Comparator(); Placeholder analyzer2 = new Placeholder(); ConditionalBranch conditionalBranch = new ConditionalBranch(); variableCreator.CollectedValues.Add(new ValueParameter("Generations", new IntValue(0))); resultsCollector1.CollectedValues.Add(new LookupParameter("Generations")); resultsCollector1.ResultsParameter.ActualName = ResultsParameter.Name; analyzer1.Name = "Analyzer"; analyzer1.OperatorParameter.ActualName = AnalyzerParameter.Name; selector.Name = "Selector"; selector.OperatorParameter.ActualName = SelectorParameter.Name; childrenCreator.ParentsPerChild = new IntValue(2); crossoverStochasticBranch.ProbabilityParameter.ActualName = CrossoverProbabilityParameter.Name; crossoverStochasticBranch.RandomParameter.ActualName = RandomParameter.Name; crossover.Name = "Crossover"; crossover.OperatorParameter.ActualName = CrossoverParameter.Name; noCrossover.Name = "Clone parent"; noCrossover.RandomParameter.ActualName = RandomParameter.Name; mutationStochasticBranch.ProbabilityParameter.ActualName = MutationProbabilityParameter.Name; mutationStochasticBranch.RandomParameter.ActualName = RandomParameter.Name; mutator.Name = "Mutator"; mutator.OperatorParameter.ActualName = MutatorParameter.Name; subScopesRemover.RemoveAllSubScopes = true; uniformSubScopesProcessor2.Parallel.Value = true; evaluator.Name = "Evaluator"; evaluator.OperatorParameter.ActualName = EvaluatorParameter.Name; subScopesCounter.Name = "Increment EvaluatedSolutions"; subScopesCounter.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name; rankAndCrowdingSorter.DominateOnEqualQualitiesParameter.ActualName = DominateOnEqualQualitiesParameter.Name; rankAndCrowdingSorter.CrowdingDistanceParameter.ActualName = "CrowdingDistance"; rankAndCrowdingSorter.RankParameter.ActualName = "Rank"; leftSelector.CopySelected = new BoolValue(false); leftSelector.NumberOfSelectedSubScopesParameter.ActualName = PopulationSizeParameter.Name; intCounter.Increment = new IntValue(1); intCounter.ValueParameter.ActualName = "Generations"; comparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual); comparator.LeftSideParameter.ActualName = "Generations"; comparator.ResultParameter.ActualName = "Terminate"; comparator.RightSideParameter.ActualName = MaximumGenerationsParameter.Name; analyzer2.Name = "Analyzer"; analyzer2.OperatorParameter.ActualName = "Analyzer"; conditionalBranch.ConditionParameter.ActualName = "Terminate"; #endregion #region Create operator graph OperatorGraph.InitialOperator = variableCreator; variableCreator.Successor = resultsCollector1; resultsCollector1.Successor = analyzer1; analyzer1.Successor = selector; selector.Successor = subScopesProcessor1; subScopesProcessor1.Operators.Add(new EmptyOperator()); subScopesProcessor1.Operators.Add(childrenCreator); subScopesProcessor1.Successor = mergingReducer; childrenCreator.Successor = uniformSubScopesProcessor1; uniformSubScopesProcessor1.Operator = crossoverStochasticBranch; uniformSubScopesProcessor1.Successor = uniformSubScopesProcessor2; crossoverStochasticBranch.FirstBranch = crossover; crossoverStochasticBranch.SecondBranch = noCrossover; crossoverStochasticBranch.Successor = mutationStochasticBranch; crossover.Successor = null; noCrossover.Successor = null; mutationStochasticBranch.FirstBranch = mutator; mutationStochasticBranch.SecondBranch = null; mutationStochasticBranch.Successor = subScopesRemover; mutator.Successor = null; subScopesRemover.Successor = null; uniformSubScopesProcessor2.Operator = evaluator; uniformSubScopesProcessor2.Successor = subScopesCounter; evaluator.Successor = null; subScopesCounter.Successor = null; mergingReducer.Successor = rankAndCrowdingSorter; rankAndCrowdingSorter.Successor = leftSelector; leftSelector.Successor = rightReducer; rightReducer.Successor = intCounter; intCounter.Successor = comparator; comparator.Successor = analyzer2; analyzer2.Successor = conditionalBranch; conditionalBranch.FalseBranch = selector; conditionalBranch.TrueBranch = null; conditionalBranch.Successor = null; #endregion } public override IDeepCloneable Clone(Cloner cloner) { return new NSGA2MainLoop(this, cloner); } } }