#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Operators; using HeuristicLab.Optimization.Operators; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Selection; namespace HeuristicLab.Algorithms.GeneticAlgorithm { /// /// An operator which represents the main loop of a genetic algorithm. /// [Item("GeneticAlgorithmMainLoop", "An operator which represents the main loop of a genetic algorithm.")] [StorableType("002D77D7-0B04-4B22-A88C-52FE1DD02B91")] public sealed class GeneticAlgorithmMainLoop : AlgorithmOperator { #region Parameter properties public ValueLookupParameter RandomParameter { get { return (ValueLookupParameter)Parameters["Random"]; } } public ValueLookupParameter MaximizationParameter { get { return (ValueLookupParameter)Parameters["Maximization"]; } } public ScopeTreeLookupParameter QualityParameter { get { return (ScopeTreeLookupParameter)Parameters["Quality"]; } } public ValueLookupParameter SelectorParameter { get { return (ValueLookupParameter)Parameters["Selector"]; } } public ValueLookupParameter CrossoverParameter { get { return (ValueLookupParameter)Parameters["Crossover"]; } } public ValueLookupParameter MutationProbabilityParameter { get { return (ValueLookupParameter)Parameters["MutationProbability"]; } } public ValueLookupParameter MutatorParameter { get { return (ValueLookupParameter)Parameters["Mutator"]; } } public ValueLookupParameter EvaluatorParameter { get { return (ValueLookupParameter)Parameters["Evaluator"]; } } public ValueLookupParameter ElitesParameter { get { return (ValueLookupParameter)Parameters["Elites"]; } } public IValueLookupParameter ReevaluateElitesParameter { get { return (IValueLookupParameter)Parameters["ReevaluateElites"]; } } public ValueLookupParameter MaximumGenerationsParameter { get { return (ValueLookupParameter)Parameters["MaximumGenerations"]; } } public ValueLookupParameter ResultsParameter { get { return (ValueLookupParameter)Parameters["Results"]; } } public ValueLookupParameter AnalyzerParameter { get { return (ValueLookupParameter)Parameters["Analyzer"]; } } public ValueLookupParameter EvaluatedSolutionsParameter { get { return (ValueLookupParameter)Parameters["EvaluatedSolutions"]; } } public ValueLookupParameter PopulationSizeParameter { get { return (ValueLookupParameter)Parameters["PopulationSize"]; } } private ScopeParameter CurrentScopeParameter { get { return (ScopeParameter)Parameters["CurrentScope"]; } } public IScope CurrentScope { get { return CurrentScopeParameter.ActualValue; } } #endregion [StorableConstructor] private GeneticAlgorithmMainLoop(bool deserializing) : base(deserializing) { } private GeneticAlgorithmMainLoop(GeneticAlgorithmMainLoop original, Cloner cloner) : base(original, cloner) { } public override IDeepCloneable Clone(Cloner cloner) { return new GeneticAlgorithmMainLoop(this, cloner); } public GeneticAlgorithmMainLoop() : base() { Initialize(); } private void Initialize() { #region Create parameters Parameters.Add(new ValueLookupParameter("Random", "A pseudo random number generator.")); Parameters.Add(new ValueLookupParameter("Maximization", "True if the problem is a maximization problem, otherwise false.")); Parameters.Add(new ScopeTreeLookupParameter("Quality", "The value which represents the quality of a solution.")); Parameters.Add(new ValueLookupParameter("Selector", "The operator used to select solutions for reproduction.")); Parameters.Add(new ValueLookupParameter("Crossover", "The operator used to cross solutions.")); Parameters.Add(new ValueLookupParameter("MutationProbability", "The probability that the mutation operator is applied on a solution.")); Parameters.Add(new ValueLookupParameter("Mutator", "The operator used to mutate solutions.")); Parameters.Add(new ValueLookupParameter("Evaluator", "The operator used to evaluate solutions. This operator is executed in parallel, if an engine is used which supports parallelization.")); Parameters.Add(new ValueLookupParameter("Elites", "The numer of elite solutions which are kept in each generation.")); Parameters.Add(new ValueLookupParameter("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)")); Parameters.Add(new ValueLookupParameter("MaximumGenerations", "The maximum number of generations which should be processed.")); Parameters.Add(new ValueLookupParameter("Results", "The variable collection where results should be stored.")); Parameters.Add(new ValueLookupParameter("Analyzer", "The operator used to analyze each generation.")); Parameters.Add(new ValueLookupParameter("EvaluatedSolutions", "The number of times solutions have been evaluated.")); Parameters.Add(new ValueLookupParameter("PopulationSize", "The size of the population.")); Parameters.Add(new ScopeParameter("CurrentScope", "The current scope which represents a population of solutions on which the genetic algorithm should be applied.")); #endregion #region Create operators VariableCreator variableCreator = new VariableCreator(); ResultsCollector resultsCollector1 = new ResultsCollector(); Placeholder analyzer1 = new Placeholder(); Placeholder selector = new Placeholder(); SubScopesProcessor subScopesProcessor1 = new SubScopesProcessor(); ChildrenCreator childrenCreator = new ChildrenCreator(); UniformSubScopesProcessor uniformSubScopesProcessor1 = new UniformSubScopesProcessor(); Placeholder crossover = new Placeholder(); StochasticBranch stochasticBranch = new StochasticBranch(); Placeholder mutator = new Placeholder(); SubScopesRemover subScopesRemover = new SubScopesRemover(); UniformSubScopesProcessor uniformSubScopesProcessor2 = new UniformSubScopesProcessor(); Placeholder evaluator = new Placeholder(); SubScopesCounter subScopesCounter = new SubScopesCounter(); SubScopesProcessor subScopesProcessor2 = new SubScopesProcessor(); BestSelector bestSelector = new BestSelector(); RightReducer rightReducer = new RightReducer(); MergingReducer mergingReducer = new MergingReducer(); IntCounter intCounter = new IntCounter(); Comparator comparator = new Comparator(); Placeholder analyzer2 = new Placeholder(); ConditionalBranch conditionalBranch = new ConditionalBranch(); ConditionalBranch reevaluateElitesBranch = new ConditionalBranch(); variableCreator.CollectedValues.Add(new ValueParameter("Generations", new IntValue(0))); // Class GeneticAlgorithm expects this to be called Generations resultsCollector1.CollectedValues.Add(new LookupParameter("Generations")); resultsCollector1.ResultsParameter.ActualName = "Results"; analyzer1.Name = "Analyzer"; analyzer1.OperatorParameter.ActualName = "Analyzer"; selector.Name = "Selector"; selector.OperatorParameter.ActualName = "Selector"; childrenCreator.ParentsPerChild = new IntValue(2); crossover.Name = "Crossover"; crossover.OperatorParameter.ActualName = "Crossover"; stochasticBranch.ProbabilityParameter.ActualName = "MutationProbability"; stochasticBranch.RandomParameter.ActualName = "Random"; mutator.Name = "Mutator"; mutator.OperatorParameter.ActualName = "Mutator"; subScopesRemover.RemoveAllSubScopes = true; uniformSubScopesProcessor2.Parallel.Value = true; evaluator.Name = "Evaluator"; evaluator.OperatorParameter.ActualName = "Evaluator"; subScopesCounter.Name = "Increment EvaluatedSolutions"; subScopesCounter.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name; bestSelector.CopySelected = new BoolValue(false); bestSelector.MaximizationParameter.ActualName = "Maximization"; bestSelector.NumberOfSelectedSubScopesParameter.ActualName = "Elites"; bestSelector.QualityParameter.ActualName = "Quality"; intCounter.Increment = new IntValue(1); intCounter.ValueParameter.ActualName = "Generations"; comparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual); comparator.LeftSideParameter.ActualName = "Generations"; comparator.ResultParameter.ActualName = "Terminate"; comparator.RightSideParameter.ActualName = "MaximumGenerations"; analyzer2.Name = "Analyzer"; analyzer2.OperatorParameter.ActualName = "Analyzer"; conditionalBranch.ConditionParameter.ActualName = "Terminate"; reevaluateElitesBranch.ConditionParameter.ActualName = "ReevaluateElites"; reevaluateElitesBranch.Name = "Reevaluate elites ?"; #endregion #region Create operator graph OperatorGraph.InitialOperator = variableCreator; variableCreator.Successor = resultsCollector1; resultsCollector1.Successor = analyzer1; analyzer1.Successor = selector; selector.Successor = subScopesProcessor1; subScopesProcessor1.Operators.Add(new EmptyOperator()); subScopesProcessor1.Operators.Add(childrenCreator); subScopesProcessor1.Successor = subScopesProcessor2; childrenCreator.Successor = uniformSubScopesProcessor1; uniformSubScopesProcessor1.Operator = crossover; uniformSubScopesProcessor1.Successor = uniformSubScopesProcessor2; crossover.Successor = stochasticBranch; stochasticBranch.FirstBranch = mutator; stochasticBranch.SecondBranch = null; stochasticBranch.Successor = subScopesRemover; mutator.Successor = null; subScopesRemover.Successor = null; uniformSubScopesProcessor2.Operator = evaluator; uniformSubScopesProcessor2.Successor = subScopesCounter; evaluator.Successor = null; subScopesCounter.Successor = null; subScopesProcessor2.Operators.Add(bestSelector); subScopesProcessor2.Operators.Add(new EmptyOperator()); subScopesProcessor2.Successor = mergingReducer; bestSelector.Successor = rightReducer; rightReducer.Successor = reevaluateElitesBranch; reevaluateElitesBranch.TrueBranch = uniformSubScopesProcessor2; reevaluateElitesBranch.FalseBranch = null; reevaluateElitesBranch.Successor = null; mergingReducer.Successor = intCounter; intCounter.Successor = comparator; comparator.Successor = analyzer2; analyzer2.Successor = conditionalBranch; conditionalBranch.FalseBranch = selector; conditionalBranch.TrueBranch = null; conditionalBranch.Successor = null; #endregion } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { // BackwardsCompatibility3.3 #region Backwards compatible code, remove with 3.4 if (!Parameters.ContainsKey("ReevaluateElites")) { Parameters.Add(new ValueLookupParameter("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)")); } #endregion } public override IOperation Apply() { if (CrossoverParameter.ActualValue == null) return null; return base.Apply(); } } }