#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.RealVectorEncoding;
using HeuristicLab.Operators;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis;
namespace HeuristicLab.Algorithms.DataAnalysis {
[Item("NcaGradientCalculator", "Calculates the quality and gradient of a certain NCA matrix.")]
[StorableType("5ED9020C-0D3E-41C6-B6DC-48E56301015C")]
public class NcaGradientCalculator : SingleSuccessorOperator, ISingleObjectiveOperator {
#region Parameter Properties
public ILookupParameter DimensionsParameter {
get { return (ILookupParameter)Parameters["Dimensions"]; }
}
public ILookupParameter NeighborSamplesParameter {
get { return (ILookupParameter)Parameters["NeighborSamples"]; }
}
public ILookupParameter RegularizationParameter {
get { return (ILookupParameter)Parameters["Regularization"]; }
}
public ILookupParameter NcaMatrixParameter {
get { return (ILookupParameter)Parameters["NcaMatrix"]; }
}
public ILookupParameter NcaMatrixGradientsParameter {
get { return (ILookupParameter)Parameters["NcaMatrixGradients"]; }
}
public ILookupParameter QualityParameter {
get { return (ILookupParameter)Parameters["Quality"]; }
}
public ILookupParameter ProblemDataParameter {
get { return (ILookupParameter)Parameters["ProblemData"]; }
}
#endregion
[StorableConstructor]
protected NcaGradientCalculator(bool deserializing) : base(deserializing) { }
protected NcaGradientCalculator(NcaGradientCalculator original, Cloner cloner) : base(original, cloner) { }
public NcaGradientCalculator()
: base() {
Parameters.Add(new LookupParameter("Dimensions", "The dimensions to which the feature space should be reduced to."));
Parameters.Add(new LookupParameter("NeighborSamples", "The number of neighbors that should be taken into account at maximum."));
Parameters.Add(new LookupParameter("Regularization", "The regularization term that constrains the expansion of the projected space."));
Parameters.Add(new LookupParameter("NcaMatrix", "The optimized matrix."));
Parameters.Add(new LookupParameter("NcaMatrixGradients", "The gradients from the matrix that is being optimized."));
Parameters.Add(new LookupParameter("Quality", "The quality of the current matrix."));
Parameters.Add(new LookupParameter("ProblemData", "The classification problem data."));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new NcaGradientCalculator(this, cloner);
}
public override IOperation Apply() {
var problemData = ProblemDataParameter.ActualValue;
var dimensions = DimensionsParameter.ActualValue.Value;
var neighborSamples = NeighborSamplesParameter.ActualValue.Value;
var regularization = RegularizationParameter.ActualValue.Value;
var vector = NcaMatrixParameter.ActualValue;
var gradients = NcaMatrixGradientsParameter.ActualValue;
if (gradients == null) {
gradients = new RealVector(vector.Length);
NcaMatrixGradientsParameter.ActualValue = gradients;
}
var data = AlglibUtil.PrepareInputMatrix(problemData.Dataset, problemData.AllowedInputVariables,
problemData.TrainingIndices);
var classes = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices).ToArray();
var quality = Gradient(vector, gradients, data, classes, dimensions, neighborSamples, regularization);
QualityParameter.ActualValue = new DoubleValue(quality);
return base.Apply();
}
private static double Gradient(RealVector A, RealVector grad, double[,] data, double[] classes, int dimensions, int neighborSamples, double regularization) {
var instances = data.GetLength(0);
var attributes = data.GetLength(1);
var AMatrix = new Matrix(A, A.Length / dimensions, dimensions);
alglib.sparsematrix probabilities;
alglib.sparsecreate(instances, instances, out probabilities);
var transformedDistances = new Dictionary(instances);
for (int i = 0; i < instances; i++) {
var iVector = new Matrix(GetRow(data, i), data.GetLength(1));
for (int k = 0; k < instances; k++) {
if (k == i) {
transformedDistances.Remove(k);
continue;
}
var kVector = new Matrix(GetRow(data, k));
transformedDistances[k] = Math.Exp(-iVector.Multiply(AMatrix).Subtract(kVector.Multiply(AMatrix)).SumOfSquares());
}
var normalization = transformedDistances.Sum(x => x.Value);
if (normalization <= 0) continue;
foreach (var s in transformedDistances.Where(x => x.Value > 0).OrderByDescending(x => x.Value).Take(neighborSamples)) {
alglib.sparseset(probabilities, i, s.Key, s.Value / normalization);
}
}
alglib.sparseconverttocrs(probabilities); // needed to enumerate in order (top-down and left-right)
int t0 = 0, t1 = 0, r, c;
double val;
var pi = new double[instances];
while (alglib.sparseenumerate(probabilities, ref t0, ref t1, out r, out c, out val)) {
if (classes[r].IsAlmost(classes[c])) {
pi[r] += val;
}
}
var innerSum = new double[attributes, attributes];
while (alglib.sparseenumerate(probabilities, ref t0, ref t1, out r, out c, out val)) {
var vector = new Matrix(GetRow(data, r)).Subtract(new Matrix(GetRow(data, c)));
vector.OuterProduct(vector).Multiply(val * pi[r]).AddTo(innerSum);
if (classes[r].IsAlmost(classes[c])) {
vector.OuterProduct(vector).Multiply(-val).AddTo(innerSum);
}
}
var func = -pi.Sum() + regularization * AMatrix.SumOfSquares();
r = 0;
var newGrad = AMatrix.Multiply(-2.0).Transpose().Multiply(new Matrix(innerSum)).Transpose();
foreach (var g in newGrad) {
grad[r] = g + regularization * 2 * A[r];
r++;
}
return func;
}
private static IEnumerable GetRow(double[,] data, int row) {
for (int i = 0; i < data.GetLength(1); i++)
yield return data[row, i];
}
}
}