#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.RealVectorEncoding;
using HeuristicLab.Operators;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis;
namespace HeuristicLab.Algorithms.DataAnalysis {
[Item("NcaInitializer", "Base class for initializers for NCA.")]
[StorableClass("C8FC5719-EF07-4794-8B0C-31B18D994DEF")]
public abstract class NcaInitializer : SingleSuccessorOperator, INcaInitializer {
public ILookupParameter ProblemDataParameter {
get { return (ILookupParameter)Parameters["ProblemData"]; }
}
public ILookupParameter DimensionsParameter {
get { return (ILookupParameter)Parameters["Dimensions"]; }
}
public ILookupParameter NcaMatrixParameter {
get { return (ILookupParameter)Parameters["NcaMatrix"]; }
}
[StorableConstructor]
protected NcaInitializer(bool deserializing) : base(deserializing) { }
protected NcaInitializer(NcaInitializer original, Cloner cloner) : base(original, cloner) { }
public NcaInitializer() {
Parameters.Add(new LookupParameter("ProblemData", "The classification problem data."));
Parameters.Add(new LookupParameter("Dimensions", "The number of dimensions to which the features should be pruned."));
Parameters.Add(new LookupParameter("NcaMatrix", "The coefficients of the matrix that need to be optimized. Note that the matrix is flattened."));
}
public override IOperation Apply() {
var problemData = ProblemDataParameter.ActualValue;
var dimensions = DimensionsParameter.ActualValue.Value;
var matrix = Initialize(problemData, dimensions);
var attributes = matrix.GetLength(0);
var result = new double[attributes * dimensions];
for (int i = 0; i < attributes; i++)
for (int j = 0; j < dimensions; j++)
result[i * dimensions + j] = matrix[i, j];
NcaMatrixParameter.ActualValue = new RealVector(result);
return base.Apply();
}
public abstract double[,] Initialize(IClassificationProblemData data, int dimensions);
}
}