#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System;
using System.Collections.Generic;
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
namespace HeuristicLab.Algorithms.DataAnalysis {
[StorableType("0EBB89C9-1C63-4E00-9248-8594F07BB7D2")]
[Item(Name = "MeanZero", Description = "Constant zero mean function for Gaussian processes.")]
public sealed class MeanZero : Item, IMeanFunction {
[StorableConstructor]
private MeanZero(bool deserializing) : base(deserializing) { }
private MeanZero(MeanZero original, Cloner cloner)
: base(original, cloner) {
}
public MeanZero() {
}
public override IDeepCloneable Clone(Cloner cloner) {
return new MeanZero(this, cloner);
}
public int GetNumberOfParameters(int numberOfVariables) {
return 0;
}
public void SetParameter(double[] p) {
if (p.Length > 0) throw new ArgumentException("No parameters allowed for zero mean function.", "p");
}
public ParameterizedMeanFunction GetParameterizedMeanFunction(double[] p, IEnumerable columnIndices) {
if (p.Length > 0) throw new ArgumentException("No parameters allowed for zero mean function.", "p");
var mf = new ParameterizedMeanFunction();
mf.Mean = (x, i) => 0.0;
mf.Gradient = (x, i, k) => {
if (k > 0)
throw new ArgumentException();
return 0.0;
};
return mf;
}
}
}