#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Collections.Generic; using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.DataAnalysis; namespace HeuristicLab.Algorithms.DataAnalysis { /// /// Represents a Gaussian process solution for a regression problem which can be visualized in the GUI. /// [Item("GaussianProcessRegressionSolution", "Represents a Gaussian process solution for a regression problem which can be visualized in the GUI.")] [StorableClass("187E5639-5E23-4471-BC2D-0CB7921E5851")] public sealed class GaussianProcessRegressionSolution : RegressionSolution, IGaussianProcessSolution { private new readonly Dictionary evaluationCache; public new IGaussianProcessModel Model { get { return (IGaussianProcessModel)base.Model; } set { base.Model = value; } } [StorableConstructor] private GaussianProcessRegressionSolution(bool deserializing) : base(deserializing) { evaluationCache = new Dictionary(); } private GaussianProcessRegressionSolution(GaussianProcessRegressionSolution original, Cloner cloner) : base(original, cloner) { evaluationCache = new Dictionary(original.evaluationCache); } public GaussianProcessRegressionSolution(IGaussianProcessModel model, IRegressionProblemData problemData) : base(model, problemData) { evaluationCache = new Dictionary(problemData.Dataset.Rows); } public override IDeepCloneable Clone(Cloner cloner) { return new GaussianProcessRegressionSolution(this, cloner); } public IEnumerable EstimatedVariance { get { return GetEstimatedVariance(Enumerable.Range(0, ProblemData.Dataset.Rows)); } } public IEnumerable EstimatedTrainingVariance { get { return GetEstimatedVariance(ProblemData.TrainingIndices); } } public IEnumerable EstimatedTestVariance { get { return GetEstimatedVariance(ProblemData.TestIndices); } } public IEnumerable GetEstimatedVariance(IEnumerable rows) { var rowsToEvaluate = rows.Except(evaluationCache.Keys); var rowsEnumerator = rowsToEvaluate.GetEnumerator(); var valuesEnumerator = Model.GetEstimatedVariance(ProblemData.Dataset, rowsToEvaluate).GetEnumerator(); while (rowsEnumerator.MoveNext() & valuesEnumerator.MoveNext()) { evaluationCache.Add(rowsEnumerator.Current, valuesEnumerator.Current); } return rows.Select(row => evaluationCache[row]); } protected override void OnModelChanged() { evaluationCache.Clear(); base.OnModelChanged(); } protected override void OnProblemDataChanged() { evaluationCache.Clear(); base.OnProblemDataChanged(); } } }