#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Drawing; using System.Linq; using System.Threading; using HeuristicLab.Collections; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Optimization; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.DataAnalysis; using HeuristicLab.Problems.DataAnalysis.Symbolic; namespace HeuristicLab.Algorithms.DataAnalysis { [Item("Cross Validation (CV)", "Cross-validation wrapper for data analysis algorithms.")] [Creatable(CreatableAttribute.Categories.DataAnalysis, Priority = 100)] [StorableClass("0C10D8F9-0511-44DD-9FED-42BFD539E96B")] public sealed class CrossValidation : ParameterizedNamedItem, IAlgorithm, IStorableContent { public CrossValidation() : base() { name = ItemName; description = ItemDescription; executionState = ExecutionState.Stopped; runs = new RunCollection { OptimizerName = name }; runsCounter = 0; algorithm = null; clonedAlgorithms = new ItemCollection(); results = new ResultCollection(); folds = new IntValue(2); numberOfWorkers = new IntValue(1); samplesStart = new IntValue(0); samplesEnd = new IntValue(0); storeAlgorithmInEachRun = false; RegisterEvents(); if (Algorithm != null) RegisterAlgorithmEvents(); } public string Filename { get; set; } #region persistence and cloning [StorableConstructor] private CrossValidation(bool deserializing) : base(deserializing) { } [StorableHook(HookType.AfterDeserialization)] private void AfterDeserialization() { RegisterEvents(); if (Algorithm != null) RegisterAlgorithmEvents(); } private CrossValidation(CrossValidation original, Cloner cloner) : base(original, cloner) { executionState = original.executionState; storeAlgorithmInEachRun = original.storeAlgorithmInEachRun; runs = cloner.Clone(original.runs); runsCounter = original.runsCounter; algorithm = cloner.Clone(original.algorithm); clonedAlgorithms = cloner.Clone(original.clonedAlgorithms); results = cloner.Clone(original.results); folds = cloner.Clone(original.folds); numberOfWorkers = cloner.Clone(original.numberOfWorkers); samplesStart = cloner.Clone(original.samplesStart); samplesEnd = cloner.Clone(original.samplesEnd); RegisterEvents(); if (Algorithm != null) RegisterAlgorithmEvents(); } public override IDeepCloneable Clone(Cloner cloner) { return new CrossValidation(this, cloner); } #endregion #region properties [Storable] private IAlgorithm algorithm; public IAlgorithm Algorithm { get { return algorithm; } set { if (ExecutionState != ExecutionState.Prepared && ExecutionState != ExecutionState.Stopped) throw new InvalidOperationException("Changing the algorithm is only allowed if the CrossValidation is stopped or prepared."); if (algorithm != value) { if (value != null && value.Problem != null && !(value.Problem is IDataAnalysisProblem)) throw new ArgumentException("Only algorithms with a DataAnalysisProblem could be used for the cross validation."); if (algorithm != null) DeregisterAlgorithmEvents(); algorithm = value; Parameters.Clear(); if (algorithm != null) { algorithm.StoreAlgorithmInEachRun = false; RegisterAlgorithmEvents(); algorithm.Prepare(true); Parameters.AddRange(algorithm.Parameters); } OnAlgorithmChanged(); Prepare(); } } } [Storable] private IDataAnalysisProblem problem; public IDataAnalysisProblem Problem { get { if (algorithm == null) return null; return (IDataAnalysisProblem)algorithm.Problem; } set { if (ExecutionState != ExecutionState.Prepared && ExecutionState != ExecutionState.Stopped) throw new InvalidOperationException("Changing the problem is only allowed if the CrossValidation is stopped or prepared."); if (algorithm == null) throw new ArgumentNullException("Could not set a problem before an algorithm was set."); algorithm.Problem = value; problem = value; } } IProblem IAlgorithm.Problem { get { return Problem; } set { if (value != null && !ProblemType.IsInstanceOfType(value)) throw new ArgumentException("Only DataAnalysisProblems could be used for the cross validation."); Problem = (IDataAnalysisProblem)value; } } public Type ProblemType { get { return typeof(IDataAnalysisProblem); } } [Storable] private ItemCollection clonedAlgorithms; public IEnumerable NestedOptimizers { get { if (Algorithm == null) yield break; yield return Algorithm; } } [Storable] private ResultCollection results; public ResultCollection Results { get { return results; } } [Storable] private IntValue folds; public IntValue Folds { get { return folds; } } [Storable] private IntValue samplesStart; public IntValue SamplesStart { get { return samplesStart; } } [Storable] private IntValue samplesEnd; public IntValue SamplesEnd { get { return samplesEnd; } } [Storable] private IntValue numberOfWorkers; public IntValue NumberOfWorkers { get { return numberOfWorkers; } } [Storable] private bool storeAlgorithmInEachRun; public bool StoreAlgorithmInEachRun { get { return storeAlgorithmInEachRun; } set { if (storeAlgorithmInEachRun != value) { storeAlgorithmInEachRun = value; OnStoreAlgorithmInEachRunChanged(); } } } [Storable] private int runsCounter; [Storable] private RunCollection runs; public RunCollection Runs { get { return runs; } } [Storable] private ExecutionState executionState; public ExecutionState ExecutionState { get { return executionState; } private set { if (executionState != value) { executionState = value; OnExecutionStateChanged(); OnItemImageChanged(); } } } public static new Image StaticItemImage { get { return HeuristicLab.Common.Resources.VSImageLibrary.Event; } } public override Image ItemImage { get { if (ExecutionState == ExecutionState.Prepared) return HeuristicLab.Common.Resources.VSImageLibrary.ExecutablePrepared; else if (ExecutionState == ExecutionState.Started) return HeuristicLab.Common.Resources.VSImageLibrary.ExecutableStarted; else if (ExecutionState == ExecutionState.Paused) return HeuristicLab.Common.Resources.VSImageLibrary.ExecutablePaused; else if (ExecutionState == ExecutionState.Stopped) return HeuristicLab.Common.Resources.VSImageLibrary.ExecutableStopped; else return base.ItemImage; } } public TimeSpan ExecutionTime { get { if (ExecutionState != ExecutionState.Prepared) return TimeSpan.FromMilliseconds(clonedAlgorithms.Select(x => x.ExecutionTime.TotalMilliseconds).Sum()); return TimeSpan.Zero; } } #endregion protected override void OnNameChanged() { base.OnNameChanged(); Runs.OptimizerName = Name; } public void Prepare() { if (ExecutionState == ExecutionState.Started) throw new InvalidOperationException(string.Format("Prepare not allowed in execution state \"{0}\".", ExecutionState)); results.Clear(); clonedAlgorithms.Clear(); if (Algorithm != null) { Algorithm.Prepare(); if (Algorithm.ExecutionState == ExecutionState.Prepared) OnPrepared(); } } public void Prepare(bool clearRuns) { if (clearRuns) runs.Clear(); Prepare(); } public void Start() { if ((ExecutionState != ExecutionState.Prepared) && (ExecutionState != ExecutionState.Paused)) throw new InvalidOperationException(string.Format("Start not allowed in execution state \"{0}\".", ExecutionState)); if (Algorithm != null) { //create cloned algorithms if (clonedAlgorithms.Count == 0) { int testSamplesCount = (SamplesEnd.Value - SamplesStart.Value) / Folds.Value; for (int i = 0; i < Folds.Value; i++) { IAlgorithm clonedAlgorithm = (IAlgorithm)algorithm.Clone(); clonedAlgorithm.Name = algorithm.Name + " Fold " + i; IDataAnalysisProblem problem = clonedAlgorithm.Problem as IDataAnalysisProblem; ISymbolicDataAnalysisProblem symbolicProblem = problem as ISymbolicDataAnalysisProblem; int testStart = (i * testSamplesCount) + SamplesStart.Value; int testEnd = (i + 1) == Folds.Value ? SamplesEnd.Value : (i + 1) * testSamplesCount + SamplesStart.Value; problem.ProblemData.TrainingPartition.Start = SamplesStart.Value; problem.ProblemData.TrainingPartition.End = SamplesEnd.Value; problem.ProblemData.TestPartition.Start = testStart; problem.ProblemData.TestPartition.End = testEnd; DataAnalysisProblemData problemData = problem.ProblemData as DataAnalysisProblemData; if (problemData != null) { problemData.TrainingPartitionParameter.Hidden = false; problemData.TestPartitionParameter.Hidden = false; } if (symbolicProblem != null) { symbolicProblem.FitnessCalculationPartition.Start = SamplesStart.Value; symbolicProblem.FitnessCalculationPartition.End = SamplesEnd.Value; } clonedAlgorithm.Prepare(); clonedAlgorithms.Add(clonedAlgorithm); } } //start prepared or paused cloned algorithms int startedAlgorithms = 0; foreach (IAlgorithm clonedAlgorithm in clonedAlgorithms) { if (startedAlgorithms < NumberOfWorkers.Value) { if (clonedAlgorithm.ExecutionState == ExecutionState.Prepared || clonedAlgorithm.ExecutionState == ExecutionState.Paused) { // start and wait until the alg is started using (var signal = new ManualResetEvent(false)) { EventHandler signalSetter = (sender, args) => { signal.Set(); }; clonedAlgorithm.Started += signalSetter; clonedAlgorithm.Start(); signal.WaitOne(); clonedAlgorithm.Started -= signalSetter; startedAlgorithms++; } } } } OnStarted(); } } private bool pausePending; public void Pause() { if (ExecutionState != ExecutionState.Started) throw new InvalidOperationException(string.Format("Pause not allowed in execution state \"{0}\".", ExecutionState)); if (!pausePending) { pausePending = true; PauseAllClonedAlgorithms(); } } private void PauseAllClonedAlgorithms() { foreach (IAlgorithm clonedAlgorithm in clonedAlgorithms) { if (clonedAlgorithm.ExecutionState == ExecutionState.Started) clonedAlgorithm.Pause(); } } private bool stopPending; public void Stop() { if ((ExecutionState != ExecutionState.Started) && (ExecutionState != ExecutionState.Paused)) throw new InvalidOperationException(string.Format("Stop not allowed in execution state \"{0}\".", ExecutionState)); if (!stopPending) { stopPending = true; StopAllClonedAlgorithms(); } } private void StopAllClonedAlgorithms() { foreach (IAlgorithm clonedAlgorithm in clonedAlgorithms) { if (clonedAlgorithm.ExecutionState == ExecutionState.Started || clonedAlgorithm.ExecutionState == ExecutionState.Paused) clonedAlgorithm.Stop(); } } #region collect parameters and results public override void CollectParameterValues(IDictionary values) { values.Add("Algorithm Name", new StringValue(Name)); values.Add("Algorithm Type", new StringValue(GetType().GetPrettyName())); values.Add("Folds", new IntValue(Folds.Value)); if (algorithm != null) { values.Add("CrossValidation Algorithm Name", new StringValue(Algorithm.Name)); values.Add("CrossValidation Algorithm Type", new StringValue(Algorithm.GetType().GetPrettyName())); base.CollectParameterValues(values); } if (Problem != null) { values.Add("Problem Name", new StringValue(Problem.Name)); values.Add("Problem Type", new StringValue(Problem.GetType().GetPrettyName())); Problem.CollectParameterValues(values); } } public void CollectResultValues(IDictionary results) { var clonedResults = (ResultCollection)this.results.Clone(); foreach (var result in clonedResults) { results.Add(result.Name, result.Value); } } private void AggregateResultValues(IDictionary results) { IEnumerable runs = clonedAlgorithms.Select(alg => alg.Runs.FirstOrDefault()).Where(run => run != null); IEnumerable> resultCollections = runs.Where(x => x != null).SelectMany(x => x.Results).ToList(); foreach (IResult result in ExtractAndAggregateResults(resultCollections)) results.Add(result.Name, result.Value); foreach (IResult result in ExtractAndAggregateResults(resultCollections)) results.Add(result.Name, result.Value); foreach (IResult result in ExtractAndAggregateResults(resultCollections)) results.Add(result.Name, result.Value); foreach (IResult result in ExtractAndAggregateRegressionSolutions(resultCollections)) { results.Add(result.Name, result.Value); } foreach (IResult result in ExtractAndAggregateClassificationSolutions(resultCollections)) { results.Add(result.Name, result.Value); } results.Add("Execution Time", new TimeSpanValue(this.ExecutionTime)); results.Add("CrossValidation Folds", new RunCollection(runs)); } private IEnumerable ExtractAndAggregateRegressionSolutions(IEnumerable> resultCollections) { Dictionary> resultSolutions = new Dictionary>(); foreach (var result in resultCollections) { var regressionSolution = result.Value as IRegressionSolution; if (regressionSolution != null) { if (resultSolutions.ContainsKey(result.Key)) { resultSolutions[result.Key].Add(regressionSolution); } else { resultSolutions.Add(result.Key, new List() { regressionSolution }); } } } List aggregatedResults = new List(); foreach (KeyValuePair> solutions in resultSolutions) { // clone manually to correctly clone references between cloned root objects Cloner cloner = new Cloner(); var problemDataClone = (IRegressionProblemData)cloner.Clone(Problem.ProblemData); // set partitions of problem data clone correctly problemDataClone.TrainingPartition.Start = SamplesStart.Value; problemDataClone.TrainingPartition.End = SamplesEnd.Value; problemDataClone.TestPartition.Start = SamplesStart.Value; problemDataClone.TestPartition.End = SamplesEnd.Value; // clone models var ensembleSolution = new RegressionEnsembleSolution(problemDataClone); ensembleSolution.AddRegressionSolutions(solutions.Value); aggregatedResults.Add(new Result(solutions.Key + " (ensemble)", ensembleSolution)); } List flattenedResults = new List(); CollectResultsRecursively("", aggregatedResults, flattenedResults); return flattenedResults; } private IEnumerable ExtractAndAggregateClassificationSolutions(IEnumerable> resultCollections) { Dictionary> resultSolutions = new Dictionary>(); foreach (var result in resultCollections) { var classificationSolution = result.Value as IClassificationSolution; if (classificationSolution != null) { if (resultSolutions.ContainsKey(result.Key)) { resultSolutions[result.Key].Add(classificationSolution); } else { resultSolutions.Add(result.Key, new List() { classificationSolution }); } } } var aggregatedResults = new List(); foreach (KeyValuePair> solutions in resultSolutions) { // clone manually to correctly clone references between cloned root objects Cloner cloner = new Cloner(); var problemDataClone = (IClassificationProblemData)cloner.Clone(Problem.ProblemData); // set partitions of problem data clone correctly problemDataClone.TrainingPartition.Start = SamplesStart.Value; problemDataClone.TrainingPartition.End = SamplesEnd.Value; problemDataClone.TestPartition.Start = SamplesStart.Value; problemDataClone.TestPartition.End = SamplesEnd.Value; // clone models var ensembleSolution = new ClassificationEnsembleSolution(problemDataClone); ensembleSolution.AddClassificationSolutions(solutions.Value); aggregatedResults.Add(new Result(solutions.Key + " (ensemble)", ensembleSolution)); } List flattenedResults = new List(); CollectResultsRecursively("", aggregatedResults, flattenedResults); return flattenedResults; } private void CollectResultsRecursively(string path, IEnumerable results, IList flattenedResults) { foreach (IResult result in results) { flattenedResults.Add(new Result(path + result.Name, result.Value)); ResultCollection childCollection = result.Value as ResultCollection; if (childCollection != null) { CollectResultsRecursively(path + result.Name + ".", childCollection, flattenedResults); } } } private static IEnumerable ExtractAndAggregateResults(IEnumerable> results) where T : class, IItem, new() { Dictionary> resultValues = new Dictionary>(); foreach (var resultValue in results.Where(r => r.Value.GetType() == typeof(T))) { if (!resultValues.ContainsKey(resultValue.Key)) resultValues[resultValue.Key] = new List(); resultValues[resultValue.Key].Add(ConvertToDouble(resultValue.Value)); } DoubleValue doubleValue; if (typeof(T) == typeof(PercentValue)) doubleValue = new PercentValue(); else if (typeof(T) == typeof(DoubleValue)) doubleValue = new DoubleValue(); else if (typeof(T) == typeof(IntValue)) doubleValue = new DoubleValue(); else throw new NotSupportedException(); List aggregatedResults = new List(); foreach (KeyValuePair> resultValue in resultValues) { doubleValue.Value = resultValue.Value.Average(); aggregatedResults.Add(new Result(resultValue.Key + " (average)", (IItem)doubleValue.Clone())); doubleValue.Value = resultValue.Value.StandardDeviation(); aggregatedResults.Add(new Result(resultValue.Key + " (std.dev.)", (IItem)doubleValue.Clone())); } return aggregatedResults; } private static double ConvertToDouble(IItem item) { if (item is DoubleValue) return ((DoubleValue)item).Value; else if (item is IntValue) return ((IntValue)item).Value; else throw new NotSupportedException("Could not convert any item type to double"); } #endregion #region events private void RegisterEvents() { Folds.ValueChanged += new EventHandler(Folds_ValueChanged); RegisterClonedAlgorithmsEvents(); } private void Folds_ValueChanged(object sender, EventArgs e) { if (ExecutionState != ExecutionState.Prepared) throw new InvalidOperationException("Can not change number of folds if the execution state is not prepared."); } #region template algorithms events public event EventHandler AlgorithmChanged; private void OnAlgorithmChanged() { EventHandler handler = AlgorithmChanged; if (handler != null) handler(this, EventArgs.Empty); OnProblemChanged(); if (Problem == null) ExecutionState = ExecutionState.Stopped; } private void RegisterAlgorithmEvents() { algorithm.ProblemChanged += new EventHandler(Algorithm_ProblemChanged); algorithm.ExecutionStateChanged += new EventHandler(Algorithm_ExecutionStateChanged); if (Problem != null) Problem.Reset += new EventHandler(Problem_Reset); } private void DeregisterAlgorithmEvents() { algorithm.ProblemChanged -= new EventHandler(Algorithm_ProblemChanged); algorithm.ExecutionStateChanged -= new EventHandler(Algorithm_ExecutionStateChanged); if (Problem != null) Problem.Reset -= new EventHandler(Problem_Reset); } private void Algorithm_ProblemChanged(object sender, EventArgs e) { if (algorithm.Problem != null && !(algorithm.Problem is IDataAnalysisProblem)) { algorithm.Problem = problem; throw new ArgumentException("A cross validation algorithm can only contain DataAnalysisProblems."); } if (problem != null) problem.Reset -= new EventHandler(Problem_Reset); problem = (IDataAnalysisProblem)algorithm.Problem; if (problem != null) problem.Reset += new EventHandler(Problem_Reset); OnProblemChanged(); } public event EventHandler ProblemChanged; private void OnProblemChanged() { EventHandler handler = ProblemChanged; if (handler != null) handler(this, EventArgs.Empty); ConfigureProblem(); } private void Problem_Reset(object sender, EventArgs e) { ConfigureProblem(); } private void ConfigureProblem() { SamplesStart.Value = 0; if (Problem != null) { SamplesEnd.Value = Problem.ProblemData.Dataset.Rows; DataAnalysisProblemData problemData = Problem.ProblemData as DataAnalysisProblemData; if (problemData != null) { problemData.TrainingPartitionParameter.Hidden = true; problemData.TestPartitionParameter.Hidden = true; } ISymbolicDataAnalysisProblem symbolicProblem = Problem as ISymbolicDataAnalysisProblem; if (symbolicProblem != null) { symbolicProblem.FitnessCalculationPartitionParameter.Hidden = true; symbolicProblem.FitnessCalculationPartition.Start = SamplesStart.Value; symbolicProblem.FitnessCalculationPartition.End = SamplesEnd.Value; symbolicProblem.ValidationPartitionParameter.Hidden = true; symbolicProblem.ValidationPartition.Start = 0; symbolicProblem.ValidationPartition.End = 0; } } else SamplesEnd.Value = 0; } private void Algorithm_ExecutionStateChanged(object sender, EventArgs e) { switch (Algorithm.ExecutionState) { case ExecutionState.Prepared: OnPrepared(); break; case ExecutionState.Started: throw new InvalidOperationException("Algorithm template can not be started."); case ExecutionState.Paused: throw new InvalidOperationException("Algorithm template can not be paused."); case ExecutionState.Stopped: OnStopped(); break; } } #endregion #region clonedAlgorithms events private void RegisterClonedAlgorithmsEvents() { clonedAlgorithms.ItemsAdded += new CollectionItemsChangedEventHandler(ClonedAlgorithms_ItemsAdded); clonedAlgorithms.ItemsRemoved += new CollectionItemsChangedEventHandler(ClonedAlgorithms_ItemsRemoved); clonedAlgorithms.CollectionReset += new CollectionItemsChangedEventHandler(ClonedAlgorithms_CollectionReset); foreach (IAlgorithm algorithm in clonedAlgorithms) RegisterClonedAlgorithmEvents(algorithm); } private void DeregisterClonedAlgorithmsEvents() { clonedAlgorithms.ItemsAdded -= new CollectionItemsChangedEventHandler(ClonedAlgorithms_ItemsAdded); clonedAlgorithms.ItemsRemoved -= new CollectionItemsChangedEventHandler(ClonedAlgorithms_ItemsRemoved); clonedAlgorithms.CollectionReset -= new CollectionItemsChangedEventHandler(ClonedAlgorithms_CollectionReset); foreach (IAlgorithm algorithm in clonedAlgorithms) DeregisterClonedAlgorithmEvents(algorithm); } private void ClonedAlgorithms_ItemsAdded(object sender, CollectionItemsChangedEventArgs e) { foreach (IAlgorithm algorithm in e.Items) RegisterClonedAlgorithmEvents(algorithm); } private void ClonedAlgorithms_ItemsRemoved(object sender, CollectionItemsChangedEventArgs e) { foreach (IAlgorithm algorithm in e.Items) DeregisterClonedAlgorithmEvents(algorithm); } private void ClonedAlgorithms_CollectionReset(object sender, CollectionItemsChangedEventArgs e) { foreach (IAlgorithm algorithm in e.OldItems) DeregisterClonedAlgorithmEvents(algorithm); foreach (IAlgorithm algorithm in e.Items) RegisterClonedAlgorithmEvents(algorithm); } private void RegisterClonedAlgorithmEvents(IAlgorithm algorithm) { algorithm.ExceptionOccurred += new EventHandler>(ClonedAlgorithm_ExceptionOccurred); algorithm.ExecutionTimeChanged += new EventHandler(ClonedAlgorithm_ExecutionTimeChanged); algorithm.Started += new EventHandler(ClonedAlgorithm_Started); algorithm.Paused += new EventHandler(ClonedAlgorithm_Paused); algorithm.Stopped += new EventHandler(ClonedAlgorithm_Stopped); } private void DeregisterClonedAlgorithmEvents(IAlgorithm algorithm) { algorithm.ExceptionOccurred -= new EventHandler>(ClonedAlgorithm_ExceptionOccurred); algorithm.ExecutionTimeChanged -= new EventHandler(ClonedAlgorithm_ExecutionTimeChanged); algorithm.Started -= new EventHandler(ClonedAlgorithm_Started); algorithm.Paused -= new EventHandler(ClonedAlgorithm_Paused); algorithm.Stopped -= new EventHandler(ClonedAlgorithm_Stopped); } private void ClonedAlgorithm_ExceptionOccurred(object sender, EventArgs e) { OnExceptionOccurred(e.Value); } private void ClonedAlgorithm_ExecutionTimeChanged(object sender, EventArgs e) { OnExecutionTimeChanged(); } private readonly object locker = new object(); private readonly object resultLocker = new object(); private void ClonedAlgorithm_Started(object sender, EventArgs e) { IAlgorithm algorithm = sender as IAlgorithm; lock (resultLocker) { if (algorithm != null && !results.ContainsKey(algorithm.Name)) results.Add(new Result(algorithm.Name, "Contains results for the specific fold.", algorithm.Results)); } } private void ClonedAlgorithm_Paused(object sender, EventArgs e) { lock (locker) { if (pausePending && clonedAlgorithms.All(alg => alg.ExecutionState != ExecutionState.Started)) OnPaused(); } } private void ClonedAlgorithm_Stopped(object sender, EventArgs e) { lock (locker) { if (!stopPending && ExecutionState == ExecutionState.Started) { IAlgorithm preparedAlgorithm = clonedAlgorithms.FirstOrDefault(alg => alg.ExecutionState == ExecutionState.Prepared || alg.ExecutionState == ExecutionState.Paused); if (preparedAlgorithm != null) preparedAlgorithm.Start(); } if (ExecutionState != ExecutionState.Stopped) { if (clonedAlgorithms.All(alg => alg.ExecutionState == ExecutionState.Stopped)) OnStopped(); else if (stopPending && clonedAlgorithms.All( alg => alg.ExecutionState == ExecutionState.Prepared || alg.ExecutionState == ExecutionState.Stopped)) OnStopped(); } } } #endregion #endregion #region event firing public event EventHandler ExecutionStateChanged; private void OnExecutionStateChanged() { EventHandler handler = ExecutionStateChanged; if (handler != null) handler(this, EventArgs.Empty); } public event EventHandler ExecutionTimeChanged; private void OnExecutionTimeChanged() { EventHandler handler = ExecutionTimeChanged; if (handler != null) handler(this, EventArgs.Empty); } public event EventHandler Prepared; private void OnPrepared() { ExecutionState = ExecutionState.Prepared; EventHandler handler = Prepared; if (handler != null) handler(this, EventArgs.Empty); OnExecutionTimeChanged(); } public event EventHandler Started; private void OnStarted() { ExecutionState = ExecutionState.Started; EventHandler handler = Started; if (handler != null) handler(this, EventArgs.Empty); } public event EventHandler Paused; private void OnPaused() { pausePending = false; ExecutionState = ExecutionState.Paused; EventHandler handler = Paused; if (handler != null) handler(this, EventArgs.Empty); } public event EventHandler Stopped; private void OnStopped() { stopPending = false; Dictionary collectedResults = new Dictionary(); AggregateResultValues(collectedResults); results.AddRange(collectedResults.Select(x => new Result(x.Key, x.Value)).Cast().ToArray()); runsCounter++; runs.Add(new Run(string.Format("{0} Run {1}", Name, runsCounter), this)); ExecutionState = ExecutionState.Stopped; EventHandler handler = Stopped; if (handler != null) handler(this, EventArgs.Empty); } public event EventHandler> ExceptionOccurred; private void OnExceptionOccurred(Exception exception) { EventHandler> handler = ExceptionOccurred; if (handler != null) handler(this, new EventArgs(exception)); } public event EventHandler StoreAlgorithmInEachRunChanged; private void OnStoreAlgorithmInEachRunChanged() { EventHandler handler = StoreAlgorithmInEachRunChanged; if (handler != null) handler(this, EventArgs.Empty); } #endregion } }