#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using System.Linq;
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Optimization;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using HeuristicLab.Problems.DataAnalysis;
namespace HeuristicLab.Algorithms.DataAnalysis {
///
/// 0R classification algorithm.
///
[Item("ZeroR Classification", "The simplest possible classifier, ZeroR always predicts the majority class.")]
[StorableType("701DCCAC-A8F0-438C-B611-69D67FBCE250")]
public sealed class ZeroR : FixedDataAnalysisAlgorithm {
[StorableConstructor]
private ZeroR(bool deserializing) : base(deserializing) { }
private ZeroR(ZeroR original, Cloner cloner)
: base(original, cloner) {
}
public ZeroR()
: base() {
Problem = new ClassificationProblem();
}
public override IDeepCloneable Clone(Cloner cloner) {
return new ZeroR(this, cloner);
}
protected override void Run() {
var solution = CreateZeroRSolution(Problem.ProblemData);
Results.Add(new Result("ZeroR solution", "The simplest possible classifier, ZeroR always predicts the majority class.", solution));
}
public static IClassificationSolution CreateZeroRSolution(IClassificationProblemData problemData) {
var dataset = problemData.Dataset;
string target = problemData.TargetVariable;
var targetValues = dataset.GetDoubleValues(target, problemData.TrainingIndices);
// if multiple classes have the same number of observations then simply take the first one
var dominantClass = targetValues.GroupBy(x => x).ToDictionary(g => g.Key, g => g.Count())
.MaxItems(kvp => kvp.Value).Select(x => x.Key).First();
var model = new ConstantModel(dominantClass);
var solution = model.CreateClassificationSolution(problemData);
return solution;
}
}
}