#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System.Linq; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Optimization; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using HeuristicLab.Problems.DataAnalysis; namespace HeuristicLab.Algorithms.DataAnalysis { /// /// 0R classification algorithm. /// [Item("ZeroR Classification", "The simplest possible classifier, ZeroR always predicts the majority class.")] [StorableType("701DCCAC-A8F0-438C-B611-69D67FBCE250")] public sealed class ZeroR : FixedDataAnalysisAlgorithm { [StorableConstructor] private ZeroR(bool deserializing) : base(deserializing) { } private ZeroR(ZeroR original, Cloner cloner) : base(original, cloner) { } public ZeroR() : base() { Problem = new ClassificationProblem(); } public override IDeepCloneable Clone(Cloner cloner) { return new ZeroR(this, cloner); } protected override void Run() { var solution = CreateZeroRSolution(Problem.ProblemData); Results.Add(new Result("ZeroR solution", "The simplest possible classifier, ZeroR always predicts the majority class.", solution)); } public static IClassificationSolution CreateZeroRSolution(IClassificationProblemData problemData) { var dataset = problemData.Dataset; string target = problemData.TargetVariable; var targetValues = dataset.GetDoubleValues(target, problemData.TrainingIndices); // if multiple classes have the same number of observations then simply take the first one var dominantClass = targetValues.GroupBy(x => x).ToDictionary(g => g.Key, g => g.Count()) .MaxItems(kvp => kvp.Value).Select(x => x.Key).First(); var model = new ConstantModel(dominantClass); var solution = model.CreateClassificationSolution(problemData); return solution; } } }