#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.RealVectorEncoding; using HeuristicLab.Operators; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using System; using System.Linq; namespace HeuristicLab.Algorithms.CMAEvolutionStrategy { [Item("CMAUpdater", "Updates the covariance matrix and strategy parameters of CMA-ES.")] [StorableClass("709CA21D-650E-49DC-80F4-994F85C53577")] public class CMAUpdater : SingleSuccessorOperator, ICMAUpdater, IIterationBasedOperator, ISingleObjectiveOperator { public Type CMAType { get { return typeof(CMAParameters); } } #region Parameter Properties public ILookupParameter StrategyParametersParameter { get { return (ILookupParameter)Parameters["StrategyParameters"]; } } public ILookupParameter MeanParameter { get { return (ILookupParameter)Parameters["Mean"]; } } public ILookupParameter OldMeanParameter { get { return (ILookupParameter)Parameters["OldMean"]; } } public IScopeTreeLookupParameter OffspringParameter { get { return (IScopeTreeLookupParameter)Parameters["Offspring"]; } } public IScopeTreeLookupParameter QualityParameter { get { return (IScopeTreeLookupParameter)Parameters["Quality"]; } } public ILookupParameter IterationsParameter { get { return (ILookupParameter)Parameters["Iterations"]; } } public IValueLookupParameter MaximumIterationsParameter { get { return (IValueLookupParameter)Parameters["MaximumIterations"]; } } public IValueLookupParameter MaximumEvaluatedSolutionsParameter { get { return (IValueLookupParameter)Parameters["MaximumEvaluatedSolutions"]; } } public ILookupParameter DegenerateStateParameter { get { return (ILookupParameter)Parameters["DegenerateState"]; } } #endregion [StorableConstructor] protected CMAUpdater(bool deserializing) : base(deserializing) { } protected CMAUpdater(CMAUpdater original, Cloner cloner) : base(original, cloner) { } public CMAUpdater() : base() { Parameters.Add(new LookupParameter("StrategyParameters", "The strategy parameters of CMA-ES.")); Parameters.Add(new LookupParameter("Mean", "The new mean.")); Parameters.Add(new LookupParameter("OldMean", "The old mean.")); Parameters.Add(new ScopeTreeLookupParameter("Offspring", "The created offspring solutions.")); Parameters.Add(new ScopeTreeLookupParameter("Quality", "The quality of the offspring.")); Parameters.Add(new LookupParameter("Iterations", "The number of iterations passed.")); Parameters.Add(new ValueLookupParameter("MaximumIterations", "The maximum number of iterations.")); Parameters.Add(new ValueLookupParameter("MaximumEvaluatedSolutions", "The maximum number of evaluated solutions.")); Parameters.Add(new LookupParameter("DegenerateState", "Whether the algorithm state has degenerated and should be terminated.")); MeanParameter.ActualName = "XMean"; OldMeanParameter.ActualName = "XOld"; OffspringParameter.ActualName = "RealVector"; } public override IDeepCloneable Clone(Cloner cloner) { return new CMAUpdater(this, cloner); } public override IOperation Apply() { var iterations = IterationsParameter.ActualValue.Value; var xold = OldMeanParameter.ActualValue; var xmean = MeanParameter.ActualValue; var offspring = OffspringParameter.ActualValue; var quality = QualityParameter.ActualValue; var lambda = offspring.Length; var N = xmean.Length; var sp = StrategyParametersParameter.ActualValue; #region Initialize default values for strategy parameter adjustment if (sp.ChiN == 0) sp.ChiN = Math.Sqrt(N) * (1.0 - 1.0 / (4.0 * N) + 1.0 / (21.0 * N * N)); if (sp.MuEff == 0) sp.MuEff = sp.Weights.Sum() * sp.Weights.Sum() / sp.Weights.Sum(x => x * x); if (sp.CS == 0) sp.CS = (sp.MuEff + 2) / (N + sp.MuEff + 3); if (sp.Damps == 0) { var maxIterations = MaximumIterationsParameter.ActualValue.Value; var maxEvals = MaximumEvaluatedSolutionsParameter.ActualValue.Value; sp.Damps = 2 * Math.Max(0, Math.Sqrt((sp.MuEff - 1) / (N + 1)) - 1) * Math.Max(0.3, 1 - N / (1e-6 + Math.Min(maxIterations, maxEvals / lambda))) + sp.CS + 1; } if (sp.CC == 0) sp.CC = 4.0 / (N + 4); if (sp.MuCov == 0) sp.MuCov = sp.MuEff; if (sp.CCov == 0) sp.CCov = 2.0 / ((N + 1.41) * (N + 1.41) * sp.MuCov) + (1 - (1.0 / sp.MuCov)) * Math.Min(1, (2 * sp.MuEff - 1) / (sp.MuEff + (N + 2) * (N + 2))); if (sp.CCovSep == 0) sp.CCovSep = Math.Min(1, sp.CCov * (N + 1.5) / 3); #endregion sp.QualityHistory.Enqueue(quality[0].Value); while (sp.QualityHistory.Count > sp.QualityHistorySize && sp.QualityHistorySize >= 0) sp.QualityHistory.Dequeue(); for (int i = 0; i < N; i++) { sp.BDz[i] = Math.Sqrt(sp.MuEff) * (xmean[i] - xold[i]) / sp.Sigma; } if (sp.InitialIterations >= iterations) { for (int i = 0; i < N; i++) { sp.PS[i] = (1 - sp.CS) * sp.PS[i] + Math.Sqrt(sp.CS * (2 - sp.CS)) * sp.BDz[i] / sp.D[i]; } } else { var artmp = new double[N]; for (int i = 0; i < N; i++) { var sum = 0.0; for (int j = 0; j < N; j++) { sum += sp.B[j, i] * sp.BDz[j]; } artmp[i] = sum / sp.D[i]; } for (int i = 0; i < N; i++) { var sum = 0.0; for (int j = 0; j < N; j++) { sum += sp.B[i, j] * artmp[j]; } sp.PS[i] = (1 - sp.CS) * sp.PS[i] + Math.Sqrt(sp.CS * (2 - sp.CS)) * sum; } } var normPS = Math.Sqrt(sp.PS.Select(x => x * x).Sum()); var hsig = normPS / Math.Sqrt(1 - Math.Pow(1 - sp.CS, 2 * iterations)) / sp.ChiN < 1.4 + 2.0 / (N + 1) ? 1.0 : 0.0; for (int i = 0; i < sp.PC.Length; i++) { sp.PC[i] = (1 - sp.CC) * sp.PC[i] + hsig * Math.Sqrt(sp.CC * (2 - sp.CC)) * sp.BDz[i]; } if (sp.CCov > 0) { if (sp.InitialIterations >= iterations) { for (int i = 0; i < N; i++) { sp.C[i, i] = (1 - sp.CCovSep) * sp.C[i, i] + sp.CCov * (1 / sp.MuCov) * (sp.PC[i] * sp.PC[i] + (1 - hsig) * sp.CC * (2 - sp.CC) * sp.C[i, i]); for (int k = 0; k < sp.Mu; k++) { sp.C[i, i] += sp.CCov * (1 - 1 / sp.MuCov) * sp.Weights[k] * (offspring[k][i] - xold[i]) * (offspring[k][i] - xold[i]) / (sp.Sigma * sp.Sigma); } } } else { for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { sp.C[i, j] = (1 - sp.CCov) * sp.C[i, j] + sp.CCov * (1 / sp.MuCov) * (sp.PC[i] * sp.PC[j] + (1 - hsig) * sp.CC * (2 - sp.CC) * sp.C[i, j]); for (int k = 0; k < sp.Mu; k++) { sp.C[i, j] += sp.CCov * (1 - 1 / sp.MuCov) * sp.Weights[k] * (offspring[k][i] - xold[i]) * (offspring[k][j] - xold[j]) / (sp.Sigma * sp.Sigma); } } } } } sp.Sigma *= Math.Exp((sp.CS / sp.Damps) * (normPS / sp.ChiN - 1)); double minSqrtdiagC = int.MaxValue, maxSqrtdiagC = int.MinValue; for (int i = 0; i < N; i++) { if (Math.Sqrt(sp.C[i, i]) < minSqrtdiagC) minSqrtdiagC = Math.Sqrt(sp.C[i, i]); if (Math.Sqrt(sp.C[i, i]) > maxSqrtdiagC) maxSqrtdiagC = Math.Sqrt(sp.C[i, i]); } // ensure maximal and minimal standard deviations if (sp.SigmaBounds != null && sp.SigmaBounds.GetLength(0) > 0) { for (int i = 0; i < N; i++) { var d = sp.SigmaBounds[Math.Min(i, sp.SigmaBounds.GetLength(0) - 1), 0]; if (d > sp.Sigma * minSqrtdiagC) sp.Sigma = d / minSqrtdiagC; } for (int i = 0; i < N; i++) { var d = sp.SigmaBounds[Math.Min(i, sp.SigmaBounds.GetLength(0) - 1), 1]; if (d > sp.Sigma * maxSqrtdiagC) sp.Sigma = d / maxSqrtdiagC; } } // end ensure ... // testAndCorrectNumerics double fac = 1; if (sp.D.Max() < 1e-6) fac = 1.0 / sp.D.Max(); else if (sp.D.Min() > 1e4) fac = 1.0 / sp.D.Min(); if (fac != 1.0) { sp.Sigma /= fac; for (int i = 0; i < N; i++) { sp.PC[i] *= fac; sp.D[i] *= fac; for (int j = 0; j < N; j++) sp.C[i, j] *= fac * fac; } } // end testAndCorrectNumerics if (sp.InitialIterations >= iterations) { for (int i = 0; i < N; i++) sp.D[i] = Math.Sqrt(sp.C[i, i]); DegenerateStateParameter.ActualValue = new BoolValue(false); } else { double[] d; double[,] b; var success = alglib.smatrixevd(sp.C, N, 1, true, out d, out b); sp.D = d; sp.B = b; DegenerateStateParameter.ActualValue = new BoolValue(!success); // assign D to eigenvalue square roots for (int i = 0; i < N; i++) { if (sp.D[i] <= 0) { // numerical problem? DegenerateStateParameter.ActualValue.Value = true; sp.D[i] = 0; } else sp.D[i] = Math.Sqrt(sp.D[i]); } if (sp.D.Min() == 0.0) sp.AxisRatio = double.PositiveInfinity; else sp.AxisRatio = sp.D.Max() / sp.D.Min(); } return base.Apply(); } } }