#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Linq; using HeuristicLab.Analysis; using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.RealVectorEncoding; using HeuristicLab.Operators; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; namespace HeuristicLab.Algorithms.CMAEvolutionStrategy { [Item("CMAAnalyzer", "Analyzes the development of strategy parameters and visualizes the performance of CMA-ES.")] [StorableType("EE1867B6-8415-40C2-A5B5-CBA9FED77BB4")] public sealed class CMAAnalyzer : SingleSuccessorOperator, IAnalyzer, ISingleObjectiveOperator { public bool EnabledByDefault { get { return false; } } #region Parameter Properties public ILookupParameter StrategyParametersParameter { get { return (ILookupParameter)Parameters["StrategyParameters"]; } } public ILookupParameter MeanParameter { get { return (ILookupParameter)Parameters["Mean"]; } } public IScopeTreeLookupParameter QualityParameter { get { return (IScopeTreeLookupParameter)Parameters["Quality"]; } } public ILookupParameter ResultsParameter { get { return (ILookupParameter)Parameters["Results"]; } } #endregion [StorableConstructor] private CMAAnalyzer(bool deserializing) : base(deserializing) { } private CMAAnalyzer(CMAAnalyzer original, Cloner cloner) : base(original, cloner) { } public CMAAnalyzer() : base() { Parameters.Add(new LookupParameter("StrategyParameters", "The CMA strategy parameters to be analyzed.")); Parameters.Add(new LookupParameter("Mean", "The mean real vector that is being optimized.")); Parameters.Add(new ScopeTreeLookupParameter("Quality", "The qualities of the solutions.")); Parameters.Add(new LookupParameter("Results", "The collection to store the results in.")); } public override IDeepCloneable Clone(Cloner cloner) { return new CMAAnalyzer(this, cloner); } public override IOperation Apply() { var sp = StrategyParametersParameter.ActualValue; var vector = MeanParameter.ActualValue; var results = ResultsParameter.ActualValue; var qualities = QualityParameter.ActualValue; double min = qualities[0].Value, max = qualities[0].Value, avg = qualities[0].Value; for (int i = 1; i < qualities.Length; i++) { if (qualities[i].Value < min) min = qualities[i].Value; if (qualities[i].Value > max) max = qualities[i].Value; avg += qualities[i].Value; } avg /= qualities.Length; DataTable progress; if (results.ContainsKey("Progress")) { progress = (DataTable)results["Progress"].Value; } else { progress = new DataTable("Progress"); progress.Rows.Add(new DataRow("AxisRatio")); progress.Rows.Add(new DataRow("Sigma")); progress.Rows.Add(new DataRow("Min Quality")); progress.Rows.Add(new DataRow("Max Quality")); progress.Rows.Add(new DataRow("Avg Quality")); progress.VisualProperties.YAxisLogScale = true; results.Add(new Result("Progress", progress)); } progress.Rows["AxisRatio"].Values.Add(sp.AxisRatio); progress.Rows["Sigma"].Values.Add(sp.Sigma); progress.Rows["Min Quality"].Values.Add(min); progress.Rows["Max Quality"].Values.Add(max); progress.Rows["Avg Quality"].Values.Add(avg); DataTable scaling; if (results.ContainsKey("Scaling")) { scaling = (DataTable)results["Scaling"].Value; } else { scaling = new DataTable("Scaling"); scaling.VisualProperties.YAxisLogScale = true; for (int i = 0; i < sp.C.GetLength(0); i++) scaling.Rows.Add(new DataRow("Axis" + i.ToString())); results.Add(new Result("Scaling", scaling)); } for (int i = 0; i < sp.C.GetLength(0); i++) scaling.Rows["Axis" + i.ToString()].Values.Add(sp.D[i]); DataTable realVector; if (results.ContainsKey("Object Variables")) { realVector = (DataTable)results["Object Variables"].Value; } else { realVector = new DataTable("Object Variables"); for (int i = 0; i < vector.Length; i++) realVector.Rows.Add(new DataRow("Axis" + i.ToString())); results.Add(new Result("Object Variables", realVector)); } for (int i = 0; i < vector.Length; i++) realVector.Rows["Axis" + i.ToString()].Values.Add(vector[i]); DataTable stdDevs; if (results.ContainsKey("Standard Deviations")) { stdDevs = (DataTable)results["Standard Deviations"].Value; } else { stdDevs = new DataTable("Standard Deviations"); stdDevs.VisualProperties.YAxisLogScale = true; stdDevs.Rows.Add(new DataRow("MinStdDev")); stdDevs.Rows.Add(new DataRow("MaxStdDev")); for (int i = 0; i < vector.Length; i++) stdDevs.Rows.Add(new DataRow("Axis" + i.ToString())); results.Add(new Result("Standard Deviations", stdDevs)); } for (int i = 0; i < vector.Length; i++) stdDevs.Rows["Axis" + i.ToString()].Values.Add(Math.Sqrt(sp.C[i, i])); stdDevs.Rows["MinStdDev"].Values.Add(sp.D.Min() * sp.Sigma); stdDevs.Rows["MaxStdDev"].Values.Add(sp.D.Max() * sp.Sigma); return base.Apply(); } } }