#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Encodings.RealVectorEncoding;
using HeuristicLab.Operators;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using System;
using System.Linq;
namespace HeuristicLab.Algorithms.CMAEvolutionStrategy {
[Item("CMAUpdater", "Updates the covariance matrix and strategy parameters of CMA-ES.")]
[StorableType("8EB2E2B6-ECD3-49DA-95C5-99AC5B8725D3")]
public class CMAUpdater : SingleSuccessorOperator, ICMAUpdater, IIterationBasedOperator, ISingleObjectiveOperator {
public Type CMAType {
get { return typeof(CMAParameters); }
}
#region Parameter Properties
public ILookupParameter StrategyParametersParameter {
get { return (ILookupParameter)Parameters["StrategyParameters"]; }
}
public ILookupParameter MeanParameter {
get { return (ILookupParameter)Parameters["Mean"]; }
}
public ILookupParameter OldMeanParameter {
get { return (ILookupParameter)Parameters["OldMean"]; }
}
public IScopeTreeLookupParameter OffspringParameter {
get { return (IScopeTreeLookupParameter)Parameters["Offspring"]; }
}
public IScopeTreeLookupParameter QualityParameter {
get { return (IScopeTreeLookupParameter)Parameters["Quality"]; }
}
public ILookupParameter IterationsParameter {
get { return (ILookupParameter)Parameters["Iterations"]; }
}
public IValueLookupParameter MaximumIterationsParameter {
get { return (IValueLookupParameter)Parameters["MaximumIterations"]; }
}
public IValueLookupParameter MaximumEvaluatedSolutionsParameter {
get { return (IValueLookupParameter)Parameters["MaximumEvaluatedSolutions"]; }
}
public ILookupParameter DegenerateStateParameter {
get { return (ILookupParameter)Parameters["DegenerateState"]; }
}
#endregion
[StorableConstructor]
protected CMAUpdater(bool deserializing) : base(deserializing) { }
protected CMAUpdater(CMAUpdater original, Cloner cloner) : base(original, cloner) { }
public CMAUpdater()
: base() {
Parameters.Add(new LookupParameter("StrategyParameters", "The strategy parameters of CMA-ES."));
Parameters.Add(new LookupParameter("Mean", "The new mean."));
Parameters.Add(new LookupParameter("OldMean", "The old mean."));
Parameters.Add(new ScopeTreeLookupParameter("Offspring", "The created offspring solutions."));
Parameters.Add(new ScopeTreeLookupParameter("Quality", "The quality of the offspring."));
Parameters.Add(new LookupParameter("Iterations", "The number of iterations passed."));
Parameters.Add(new ValueLookupParameter("MaximumIterations", "The maximum number of iterations."));
Parameters.Add(new ValueLookupParameter("MaximumEvaluatedSolutions", "The maximum number of evaluated solutions."));
Parameters.Add(new LookupParameter("DegenerateState", "Whether the algorithm state has degenerated and should be terminated."));
MeanParameter.ActualName = "XMean";
OldMeanParameter.ActualName = "XOld";
OffspringParameter.ActualName = "RealVector";
}
public override IDeepCloneable Clone(Cloner cloner) {
return new CMAUpdater(this, cloner);
}
public override IOperation Apply() {
var iterations = IterationsParameter.ActualValue.Value;
var xold = OldMeanParameter.ActualValue;
var xmean = MeanParameter.ActualValue;
var offspring = OffspringParameter.ActualValue;
var quality = QualityParameter.ActualValue;
var lambda = offspring.Length;
var N = xmean.Length;
var sp = StrategyParametersParameter.ActualValue;
#region Initialize default values for strategy parameter adjustment
if (sp.ChiN == 0) sp.ChiN = Math.Sqrt(N) * (1.0 - 1.0 / (4.0 * N) + 1.0 / (21.0 * N * N));
if (sp.MuEff == 0) sp.MuEff = sp.Weights.Sum() * sp.Weights.Sum() / sp.Weights.Sum(x => x * x);
if (sp.CS == 0) sp.CS = (sp.MuEff + 2) / (N + sp.MuEff + 3);
if (sp.Damps == 0) {
var maxIterations = MaximumIterationsParameter.ActualValue.Value;
var maxEvals = MaximumEvaluatedSolutionsParameter.ActualValue.Value;
sp.Damps = 2 * Math.Max(0, Math.Sqrt((sp.MuEff - 1) / (N + 1)) - 1)
* Math.Max(0.3, 1 - N / (1e-6 + Math.Min(maxIterations, maxEvals / lambda))) + sp.CS + 1;
}
if (sp.CC == 0) sp.CC = 4.0 / (N + 4);
if (sp.MuCov == 0) sp.MuCov = sp.MuEff;
if (sp.CCov == 0) sp.CCov = 2.0 / ((N + 1.41) * (N + 1.41) * sp.MuCov)
+ (1 - (1.0 / sp.MuCov)) * Math.Min(1, (2 * sp.MuEff - 1) / (sp.MuEff + (N + 2) * (N + 2)));
if (sp.CCovSep == 0) sp.CCovSep = Math.Min(1, sp.CCov * (N + 1.5) / 3);
#endregion
sp.QualityHistory.Enqueue(quality[0].Value);
while (sp.QualityHistory.Count > sp.QualityHistorySize && sp.QualityHistorySize >= 0)
sp.QualityHistory.Dequeue();
for (int i = 0; i < N; i++) {
sp.BDz[i] = Math.Sqrt(sp.MuEff) * (xmean[i] - xold[i]) / sp.Sigma;
}
if (sp.InitialIterations >= iterations) {
for (int i = 0; i < N; i++) {
sp.PS[i] = (1 - sp.CS) * sp.PS[i]
+ Math.Sqrt(sp.CS * (2 - sp.CS)) * sp.BDz[i] / sp.D[i];
}
} else {
var artmp = new double[N];
for (int i = 0; i < N; i++) {
var sum = 0.0;
for (int j = 0; j < N; j++) {
sum += sp.B[j, i] * sp.BDz[j];
}
artmp[i] = sum / sp.D[i];
}
for (int i = 0; i < N; i++) {
var sum = 0.0;
for (int j = 0; j < N; j++) {
sum += sp.B[i, j] * artmp[j];
}
sp.PS[i] = (1 - sp.CS) * sp.PS[i] + Math.Sqrt(sp.CS * (2 - sp.CS)) * sum;
}
}
var normPS = Math.Sqrt(sp.PS.Select(x => x * x).Sum());
var hsig = normPS / Math.Sqrt(1 - Math.Pow(1 - sp.CS, 2 * iterations)) / sp.ChiN < 1.4 + 2.0 / (N + 1) ? 1.0 : 0.0;
for (int i = 0; i < sp.PC.Length; i++) {
sp.PC[i] = (1 - sp.CC) * sp.PC[i]
+ hsig * Math.Sqrt(sp.CC * (2 - sp.CC)) * sp.BDz[i];
}
if (sp.CCov > 0) {
if (sp.InitialIterations >= iterations) {
for (int i = 0; i < N; i++) {
sp.C[i, i] = (1 - sp.CCovSep) * sp.C[i, i]
+ sp.CCov * (1 / sp.MuCov)
* (sp.PC[i] * sp.PC[i] + (1 - hsig) * sp.CC * (2 - sp.CC) * sp.C[i, i]);
for (int k = 0; k < sp.Mu; k++) {
sp.C[i, i] += sp.CCov * (1 - 1 / sp.MuCov) * sp.Weights[k] * (offspring[k][i] - xold[i]) *
(offspring[k][i] - xold[i]) / (sp.Sigma * sp.Sigma);
}
}
} else {
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
sp.C[i, j] = (1 - sp.CCov) * sp.C[i, j]
+ sp.CCov * (1 / sp.MuCov)
* (sp.PC[i] * sp.PC[j] + (1 - hsig) * sp.CC * (2 - sp.CC) * sp.C[i, j]);
for (int k = 0; k < sp.Mu; k++) {
sp.C[i, j] += sp.CCov * (1 - 1 / sp.MuCov) * sp.Weights[k] * (offspring[k][i] - xold[i]) *
(offspring[k][j] - xold[j]) / (sp.Sigma * sp.Sigma);
}
}
}
}
}
sp.Sigma *= Math.Exp((sp.CS / sp.Damps) * (normPS / sp.ChiN - 1));
double minSqrtdiagC = int.MaxValue, maxSqrtdiagC = int.MinValue;
for (int i = 0; i < N; i++) {
if (Math.Sqrt(sp.C[i, i]) < minSqrtdiagC) minSqrtdiagC = Math.Sqrt(sp.C[i, i]);
if (Math.Sqrt(sp.C[i, i]) > maxSqrtdiagC) maxSqrtdiagC = Math.Sqrt(sp.C[i, i]);
}
// ensure maximal and minimal standard deviations
if (sp.SigmaBounds != null && sp.SigmaBounds.GetLength(0) > 0) {
for (int i = 0; i < N; i++) {
var d = sp.SigmaBounds[Math.Min(i, sp.SigmaBounds.GetLength(0) - 1), 0];
if (d > sp.Sigma * minSqrtdiagC) sp.Sigma = d / minSqrtdiagC;
}
for (int i = 0; i < N; i++) {
var d = sp.SigmaBounds[Math.Min(i, sp.SigmaBounds.GetLength(0) - 1), 1];
if (d > sp.Sigma * maxSqrtdiagC) sp.Sigma = d / maxSqrtdiagC;
}
}
// end ensure ...
// testAndCorrectNumerics
double fac = 1;
if (sp.D.Max() < 1e-6)
fac = 1.0 / sp.D.Max();
else if (sp.D.Min() > 1e4)
fac = 1.0 / sp.D.Min();
if (fac != 1.0) {
sp.Sigma /= fac;
for (int i = 0; i < N; i++) {
sp.PC[i] *= fac;
sp.D[i] *= fac;
for (int j = 0; j < N; j++)
sp.C[i, j] *= fac * fac;
}
}
// end testAndCorrectNumerics
if (sp.InitialIterations >= iterations) {
for (int i = 0; i < N; i++)
sp.D[i] = Math.Sqrt(sp.C[i, i]);
DegenerateStateParameter.ActualValue = new BoolValue(false);
} else {
// set B <- C
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
sp.B[i, j] = sp.C[i, j];
}
}
var success = Eigendecomposition(N, sp.B, sp.D);
DegenerateStateParameter.ActualValue = new BoolValue(!success);
// assign D to eigenvalue square roots
for (int i = 0; i < N; i++) {
if (sp.D[i] < 0) { // numerical problem?
DegenerateStateParameter.ActualValue.Value = true;
sp.D[i] = 0;
} else sp.D[i] = Math.Sqrt(sp.D[i]);
}
if (sp.D.Min() == 0.0) sp.AxisRatio = double.PositiveInfinity;
else sp.AxisRatio = sp.D.Max() / sp.D.Min();
}
return base.Apply();
}
private bool Eigendecomposition(int N, double[,] B, double[] diagD) {
bool result = true;
// eigendecomposition
var offdiag = new double[N];
try {
tred2(N, B, diagD, offdiag);
tql2(N, diagD, offdiag, B);
} catch { result = false; }
return result;
} // eigendecomposition
// Symmetric Householder reduction to tridiagonal form, taken from JAMA package.
private void tred2(int n, double[,] V, double[] d, double[] e) {
// This is derived from the Algol procedures tred2 by
// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutine in EISPACK.
for (int j = 0; j < n; j++) {
d[j] = V[n - 1, j];
}
// Householder reduction to tridiagonal form.
for (int i = n - 1; i > 0; i--) {
// Scale to avoid under/overflow.
double scale = 0.0;
double h = 0.0;
for (int k = 0; k < i; k++) {
scale = scale + Math.Abs(d[k]);
}
if (scale == 0.0) {
e[i] = d[i - 1];
for (int j = 0; j < i; j++) {
d[j] = V[i - 1, j];
V[i, j] = 0.0;
V[j, i] = 0.0;
}
} else {
// Generate Householder vector.
for (int k = 0; k < i; k++) {
d[k] /= scale;
h += d[k] * d[k];
}
double f = d[i - 1];
double g = Math.Sqrt(h);
if (f > 0) {
g = -g;
}
e[i] = scale * g;
h = h - f * g;
d[i - 1] = f - g;
for (int j = 0; j < i; j++) {
e[j] = 0.0;
}
// Apply similarity transformation to remaining columns.
for (int j = 0; j < i; j++) {
f = d[j];
V[j, i] = f;
g = e[j] + V[j, j] * f;
for (int k = j + 1; k <= i - 1; k++) {
g += V[k, j] * d[k];
e[k] += V[k, j] * f;
}
e[j] = g;
}
f = 0.0;
for (int j = 0; j < i; j++) {
e[j] /= h;
f += e[j] * d[j];
}
double hh = f / (h + h);
for (int j = 0; j < i; j++) {
e[j] -= hh * d[j];
}
for (int j = 0; j < i; j++) {
f = d[j];
g = e[j];
for (int k = j; k <= i - 1; k++) {
V[k, j] -= (f * e[k] + g * d[k]);
}
d[j] = V[i - 1, j];
V[i, j] = 0.0;
}
}
d[i] = h;
}
// Accumulate transformations.
for (int i = 0; i < n - 1; i++) {
V[n - 1, i] = V[i, i];
V[i, i] = 1.0;
double h = d[i + 1];
if (h != 0.0) {
for (int k = 0; k <= i; k++) {
d[k] = V[k, i + 1] / h;
}
for (int j = 0; j <= i; j++) {
double g = 0.0;
for (int k = 0; k <= i; k++) {
g += V[k, i + 1] * V[k, j];
}
for (int k = 0; k <= i; k++) {
V[k, j] -= g * d[k];
}
}
}
for (int k = 0; k <= i; k++) {
V[k, i + 1] = 0.0;
}
}
for (int j = 0; j < n; j++) {
d[j] = V[n - 1, j];
V[n - 1, j] = 0.0;
}
V[n - 1, n - 1] = 1.0;
e[0] = 0.0;
}
// Symmetric tridiagonal QL algorithm, taken from JAMA package.
private void tql2(int n, double[] d, double[] e, double[,] V) {
// This is derived from the Algol procedures tql2, by
// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutine in EISPACK.
for (int i = 1; i < n; i++) {
e[i - 1] = e[i];
}
e[n - 1] = 0.0;
double f = 0.0;
double tst1 = 0.0;
double eps = Math.Pow(2.0, -52.0);
for (int l = 0; l < n; l++) {
// Find small subdiagonal element
tst1 = Math.Max(tst1, Math.Abs(d[l]) + Math.Abs(e[l]));
int m = l;
while (m < n) {
if (Math.Abs(e[m]) <= eps * tst1) {
break;
}
m++;
}
// If m == l, d[l] is an eigenvalue,
// otherwise, iterate.
if (m > l) {
int iter = 0;
do {
iter = iter + 1; // (Could check iteration count here.)
// Compute implicit shift
double g = d[l];
double p = (d[l + 1] - g) / (2.0 * e[l]);
double r = hypot(p, 1.0);
if (p < 0) {
r = -r;
}
d[l] = e[l] / (p + r);
d[l + 1] = e[l] * (p + r);
double dl1 = d[l + 1];
double h = g - d[l];
for (int i = l + 2; i < n; i++) {
d[i] -= h;
}
f = f + h;
// Implicit QL transformation.
p = d[m];
double c = 1.0;
double c2 = c;
double c3 = c;
double el1 = e[l + 1];
double s = 0.0;
double s2 = 0.0;
for (int i = m - 1; i >= l; i--) {
c3 = c2;
c2 = c;
s2 = s;
g = c * e[i];
h = c * p;
r = hypot(p, e[i]);
e[i + 1] = s * r;
s = e[i] / r;
c = p / r;
p = c * d[i] - s * g;
d[i + 1] = h + s * (c * g + s * d[i]);
// Accumulate transformation.
for (int k = 0; k < n; k++) {
h = V[k, i + 1];
V[k, i + 1] = s * V[k, i] + c * h;
V[k, i] = c * V[k, i] - s * h;
}
}
p = -s * s2 * c3 * el1 * e[l] / dl1;
e[l] = s * p;
d[l] = c * p;
// Check for convergence.
} while (Math.Abs(e[l]) > eps * tst1);
}
d[l] = d[l] + f;
e[l] = 0.0;
}
// Sort eigenvalues and corresponding vectors.
for (int i = 0; i < n - 1; i++) {
int k = i;
double p = d[i];
for (int j = i + 1; j < n; j++) {
if (d[j] < p) { // NH find smallest k>i
k = j;
p = d[j];
}
}
if (k != i) {
d[k] = d[i]; // swap k and i
d[i] = p;
for (int j = 0; j < n; j++) {
p = V[j, i];
V[j, i] = V[j, k];
V[j, k] = p;
}
}
}
}
/** sqrt(a^2 + b^2) without under/overflow. **/
private double hypot(double a, double b) {
double r = 0;
if (Math.Abs(a) > Math.Abs(b)) {
r = b / a;
r = Math.Abs(a) * Math.Sqrt(1 + r * r);
} else if (b != 0) {
r = a / b;
r = Math.Abs(b) * Math.Sqrt(1 + r * r);
}
return r;
}
}
}