#region License Information /* HeuristicLab * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using HeuristicLab.Common; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.Encodings.RealVectorEncoding; using HeuristicLab.Operators; using HeuristicLab.Optimization; using HeuristicLab.Parameters; using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; using System; using System.Linq; namespace HeuristicLab.Algorithms.CMAEvolutionStrategy { [Item("CMAUpdater", "Updates the covariance matrix and strategy parameters of CMA-ES.")] [StorableType("8EB2E2B6-ECD3-49DA-95C5-99AC5B8725D3")] public class CMAUpdater : SingleSuccessorOperator, ICMAUpdater, IIterationBasedOperator, ISingleObjectiveOperator { public Type CMAType { get { return typeof(CMAParameters); } } #region Parameter Properties public ILookupParameter StrategyParametersParameter { get { return (ILookupParameter)Parameters["StrategyParameters"]; } } public ILookupParameter MeanParameter { get { return (ILookupParameter)Parameters["Mean"]; } } public ILookupParameter OldMeanParameter { get { return (ILookupParameter)Parameters["OldMean"]; } } public IScopeTreeLookupParameter OffspringParameter { get { return (IScopeTreeLookupParameter)Parameters["Offspring"]; } } public IScopeTreeLookupParameter QualityParameter { get { return (IScopeTreeLookupParameter)Parameters["Quality"]; } } public ILookupParameter IterationsParameter { get { return (ILookupParameter)Parameters["Iterations"]; } } public IValueLookupParameter MaximumIterationsParameter { get { return (IValueLookupParameter)Parameters["MaximumIterations"]; } } public IValueLookupParameter MaximumEvaluatedSolutionsParameter { get { return (IValueLookupParameter)Parameters["MaximumEvaluatedSolutions"]; } } public ILookupParameter DegenerateStateParameter { get { return (ILookupParameter)Parameters["DegenerateState"]; } } #endregion [StorableConstructor] protected CMAUpdater(bool deserializing) : base(deserializing) { } protected CMAUpdater(CMAUpdater original, Cloner cloner) : base(original, cloner) { } public CMAUpdater() : base() { Parameters.Add(new LookupParameter("StrategyParameters", "The strategy parameters of CMA-ES.")); Parameters.Add(new LookupParameter("Mean", "The new mean.")); Parameters.Add(new LookupParameter("OldMean", "The old mean.")); Parameters.Add(new ScopeTreeLookupParameter("Offspring", "The created offspring solutions.")); Parameters.Add(new ScopeTreeLookupParameter("Quality", "The quality of the offspring.")); Parameters.Add(new LookupParameter("Iterations", "The number of iterations passed.")); Parameters.Add(new ValueLookupParameter("MaximumIterations", "The maximum number of iterations.")); Parameters.Add(new ValueLookupParameter("MaximumEvaluatedSolutions", "The maximum number of evaluated solutions.")); Parameters.Add(new LookupParameter("DegenerateState", "Whether the algorithm state has degenerated and should be terminated.")); MeanParameter.ActualName = "XMean"; OldMeanParameter.ActualName = "XOld"; OffspringParameter.ActualName = "RealVector"; } public override IDeepCloneable Clone(Cloner cloner) { return new CMAUpdater(this, cloner); } public override IOperation Apply() { var iterations = IterationsParameter.ActualValue.Value; var xold = OldMeanParameter.ActualValue; var xmean = MeanParameter.ActualValue; var offspring = OffspringParameter.ActualValue; var quality = QualityParameter.ActualValue; var lambda = offspring.Length; var N = xmean.Length; var sp = StrategyParametersParameter.ActualValue; #region Initialize default values for strategy parameter adjustment if (sp.ChiN == 0) sp.ChiN = Math.Sqrt(N) * (1.0 - 1.0 / (4.0 * N) + 1.0 / (21.0 * N * N)); if (sp.MuEff == 0) sp.MuEff = sp.Weights.Sum() * sp.Weights.Sum() / sp.Weights.Sum(x => x * x); if (sp.CS == 0) sp.CS = (sp.MuEff + 2) / (N + sp.MuEff + 3); if (sp.Damps == 0) { var maxIterations = MaximumIterationsParameter.ActualValue.Value; var maxEvals = MaximumEvaluatedSolutionsParameter.ActualValue.Value; sp.Damps = 2 * Math.Max(0, Math.Sqrt((sp.MuEff - 1) / (N + 1)) - 1) * Math.Max(0.3, 1 - N / (1e-6 + Math.Min(maxIterations, maxEvals / lambda))) + sp.CS + 1; } if (sp.CC == 0) sp.CC = 4.0 / (N + 4); if (sp.MuCov == 0) sp.MuCov = sp.MuEff; if (sp.CCov == 0) sp.CCov = 2.0 / ((N + 1.41) * (N + 1.41) * sp.MuCov) + (1 - (1.0 / sp.MuCov)) * Math.Min(1, (2 * sp.MuEff - 1) / (sp.MuEff + (N + 2) * (N + 2))); if (sp.CCovSep == 0) sp.CCovSep = Math.Min(1, sp.CCov * (N + 1.5) / 3); #endregion sp.QualityHistory.Enqueue(quality[0].Value); while (sp.QualityHistory.Count > sp.QualityHistorySize && sp.QualityHistorySize >= 0) sp.QualityHistory.Dequeue(); for (int i = 0; i < N; i++) { sp.BDz[i] = Math.Sqrt(sp.MuEff) * (xmean[i] - xold[i]) / sp.Sigma; } if (sp.InitialIterations >= iterations) { for (int i = 0; i < N; i++) { sp.PS[i] = (1 - sp.CS) * sp.PS[i] + Math.Sqrt(sp.CS * (2 - sp.CS)) * sp.BDz[i] / sp.D[i]; } } else { var artmp = new double[N]; for (int i = 0; i < N; i++) { var sum = 0.0; for (int j = 0; j < N; j++) { sum += sp.B[j, i] * sp.BDz[j]; } artmp[i] = sum / sp.D[i]; } for (int i = 0; i < N; i++) { var sum = 0.0; for (int j = 0; j < N; j++) { sum += sp.B[i, j] * artmp[j]; } sp.PS[i] = (1 - sp.CS) * sp.PS[i] + Math.Sqrt(sp.CS * (2 - sp.CS)) * sum; } } var normPS = Math.Sqrt(sp.PS.Select(x => x * x).Sum()); var hsig = normPS / Math.Sqrt(1 - Math.Pow(1 - sp.CS, 2 * iterations)) / sp.ChiN < 1.4 + 2.0 / (N + 1) ? 1.0 : 0.0; for (int i = 0; i < sp.PC.Length; i++) { sp.PC[i] = (1 - sp.CC) * sp.PC[i] + hsig * Math.Sqrt(sp.CC * (2 - sp.CC)) * sp.BDz[i]; } if (sp.CCov > 0) { if (sp.InitialIterations >= iterations) { for (int i = 0; i < N; i++) { sp.C[i, i] = (1 - sp.CCovSep) * sp.C[i, i] + sp.CCov * (1 / sp.MuCov) * (sp.PC[i] * sp.PC[i] + (1 - hsig) * sp.CC * (2 - sp.CC) * sp.C[i, i]); for (int k = 0; k < sp.Mu; k++) { sp.C[i, i] += sp.CCov * (1 - 1 / sp.MuCov) * sp.Weights[k] * (offspring[k][i] - xold[i]) * (offspring[k][i] - xold[i]) / (sp.Sigma * sp.Sigma); } } } else { for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { sp.C[i, j] = (1 - sp.CCov) * sp.C[i, j] + sp.CCov * (1 / sp.MuCov) * (sp.PC[i] * sp.PC[j] + (1 - hsig) * sp.CC * (2 - sp.CC) * sp.C[i, j]); for (int k = 0; k < sp.Mu; k++) { sp.C[i, j] += sp.CCov * (1 - 1 / sp.MuCov) * sp.Weights[k] * (offspring[k][i] - xold[i]) * (offspring[k][j] - xold[j]) / (sp.Sigma * sp.Sigma); } } } } } sp.Sigma *= Math.Exp((sp.CS / sp.Damps) * (normPS / sp.ChiN - 1)); double minSqrtdiagC = int.MaxValue, maxSqrtdiagC = int.MinValue; for (int i = 0; i < N; i++) { if (Math.Sqrt(sp.C[i, i]) < minSqrtdiagC) minSqrtdiagC = Math.Sqrt(sp.C[i, i]); if (Math.Sqrt(sp.C[i, i]) > maxSqrtdiagC) maxSqrtdiagC = Math.Sqrt(sp.C[i, i]); } // ensure maximal and minimal standard deviations if (sp.SigmaBounds != null && sp.SigmaBounds.GetLength(0) > 0) { for (int i = 0; i < N; i++) { var d = sp.SigmaBounds[Math.Min(i, sp.SigmaBounds.GetLength(0) - 1), 0]; if (d > sp.Sigma * minSqrtdiagC) sp.Sigma = d / minSqrtdiagC; } for (int i = 0; i < N; i++) { var d = sp.SigmaBounds[Math.Min(i, sp.SigmaBounds.GetLength(0) - 1), 1]; if (d > sp.Sigma * maxSqrtdiagC) sp.Sigma = d / maxSqrtdiagC; } } // end ensure ... // testAndCorrectNumerics double fac = 1; if (sp.D.Max() < 1e-6) fac = 1.0 / sp.D.Max(); else if (sp.D.Min() > 1e4) fac = 1.0 / sp.D.Min(); if (fac != 1.0) { sp.Sigma /= fac; for (int i = 0; i < N; i++) { sp.PC[i] *= fac; sp.D[i] *= fac; for (int j = 0; j < N; j++) sp.C[i, j] *= fac * fac; } } // end testAndCorrectNumerics if (sp.InitialIterations >= iterations) { for (int i = 0; i < N; i++) sp.D[i] = Math.Sqrt(sp.C[i, i]); DegenerateStateParameter.ActualValue = new BoolValue(false); } else { // set B <- C for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { sp.B[i, j] = sp.C[i, j]; } } var success = Eigendecomposition(N, sp.B, sp.D); DegenerateStateParameter.ActualValue = new BoolValue(!success); // assign D to eigenvalue square roots for (int i = 0; i < N; i++) { if (sp.D[i] < 0) { // numerical problem? DegenerateStateParameter.ActualValue.Value = true; sp.D[i] = 0; } else sp.D[i] = Math.Sqrt(sp.D[i]); } if (sp.D.Min() == 0.0) sp.AxisRatio = double.PositiveInfinity; else sp.AxisRatio = sp.D.Max() / sp.D.Min(); } return base.Apply(); } private bool Eigendecomposition(int N, double[,] B, double[] diagD) { bool result = true; // eigendecomposition var offdiag = new double[N]; try { tred2(N, B, diagD, offdiag); tql2(N, diagD, offdiag, B); } catch { result = false; } return result; } // eigendecomposition // Symmetric Householder reduction to tridiagonal form, taken from JAMA package. private void tred2(int n, double[,] V, double[] d, double[] e) { // This is derived from the Algol procedures tred2 by // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding // Fortran subroutine in EISPACK. for (int j = 0; j < n; j++) { d[j] = V[n - 1, j]; } // Householder reduction to tridiagonal form. for (int i = n - 1; i > 0; i--) { // Scale to avoid under/overflow. double scale = 0.0; double h = 0.0; for (int k = 0; k < i; k++) { scale = scale + Math.Abs(d[k]); } if (scale == 0.0) { e[i] = d[i - 1]; for (int j = 0; j < i; j++) { d[j] = V[i - 1, j]; V[i, j] = 0.0; V[j, i] = 0.0; } } else { // Generate Householder vector. for (int k = 0; k < i; k++) { d[k] /= scale; h += d[k] * d[k]; } double f = d[i - 1]; double g = Math.Sqrt(h); if (f > 0) { g = -g; } e[i] = scale * g; h = h - f * g; d[i - 1] = f - g; for (int j = 0; j < i; j++) { e[j] = 0.0; } // Apply similarity transformation to remaining columns. for (int j = 0; j < i; j++) { f = d[j]; V[j, i] = f; g = e[j] + V[j, j] * f; for (int k = j + 1; k <= i - 1; k++) { g += V[k, j] * d[k]; e[k] += V[k, j] * f; } e[j] = g; } f = 0.0; for (int j = 0; j < i; j++) { e[j] /= h; f += e[j] * d[j]; } double hh = f / (h + h); for (int j = 0; j < i; j++) { e[j] -= hh * d[j]; } for (int j = 0; j < i; j++) { f = d[j]; g = e[j]; for (int k = j; k <= i - 1; k++) { V[k, j] -= (f * e[k] + g * d[k]); } d[j] = V[i - 1, j]; V[i, j] = 0.0; } } d[i] = h; } // Accumulate transformations. for (int i = 0; i < n - 1; i++) { V[n - 1, i] = V[i, i]; V[i, i] = 1.0; double h = d[i + 1]; if (h != 0.0) { for (int k = 0; k <= i; k++) { d[k] = V[k, i + 1] / h; } for (int j = 0; j <= i; j++) { double g = 0.0; for (int k = 0; k <= i; k++) { g += V[k, i + 1] * V[k, j]; } for (int k = 0; k <= i; k++) { V[k, j] -= g * d[k]; } } } for (int k = 0; k <= i; k++) { V[k, i + 1] = 0.0; } } for (int j = 0; j < n; j++) { d[j] = V[n - 1, j]; V[n - 1, j] = 0.0; } V[n - 1, n - 1] = 1.0; e[0] = 0.0; } // Symmetric tridiagonal QL algorithm, taken from JAMA package. private void tql2(int n, double[] d, double[] e, double[,] V) { // This is derived from the Algol procedures tql2, by // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding // Fortran subroutine in EISPACK. for (int i = 1; i < n; i++) { e[i - 1] = e[i]; } e[n - 1] = 0.0; double f = 0.0; double tst1 = 0.0; double eps = Math.Pow(2.0, -52.0); for (int l = 0; l < n; l++) { // Find small subdiagonal element tst1 = Math.Max(tst1, Math.Abs(d[l]) + Math.Abs(e[l])); int m = l; while (m < n) { if (Math.Abs(e[m]) <= eps * tst1) { break; } m++; } // If m == l, d[l] is an eigenvalue, // otherwise, iterate. if (m > l) { int iter = 0; do { iter = iter + 1; // (Could check iteration count here.) // Compute implicit shift double g = d[l]; double p = (d[l + 1] - g) / (2.0 * e[l]); double r = hypot(p, 1.0); if (p < 0) { r = -r; } d[l] = e[l] / (p + r); d[l + 1] = e[l] * (p + r); double dl1 = d[l + 1]; double h = g - d[l]; for (int i = l + 2; i < n; i++) { d[i] -= h; } f = f + h; // Implicit QL transformation. p = d[m]; double c = 1.0; double c2 = c; double c3 = c; double el1 = e[l + 1]; double s = 0.0; double s2 = 0.0; for (int i = m - 1; i >= l; i--) { c3 = c2; c2 = c; s2 = s; g = c * e[i]; h = c * p; r = hypot(p, e[i]); e[i + 1] = s * r; s = e[i] / r; c = p / r; p = c * d[i] - s * g; d[i + 1] = h + s * (c * g + s * d[i]); // Accumulate transformation. for (int k = 0; k < n; k++) { h = V[k, i + 1]; V[k, i + 1] = s * V[k, i] + c * h; V[k, i] = c * V[k, i] - s * h; } } p = -s * s2 * c3 * el1 * e[l] / dl1; e[l] = s * p; d[l] = c * p; // Check for convergence. } while (Math.Abs(e[l]) > eps * tst1); } d[l] = d[l] + f; e[l] = 0.0; } // Sort eigenvalues and corresponding vectors. for (int i = 0; i < n - 1; i++) { int k = i; double p = d[i]; for (int j = i + 1; j < n; j++) { if (d[j] < p) { // NH find smallest k>i k = j; p = d[j]; } } if (k != i) { d[k] = d[i]; // swap k and i d[i] = p; for (int j = 0; j < n; j++) { p = V[j, i]; V[j, i] = V[j, k]; V[j, k] = p; } } } } /** sqrt(a^2 + b^2) without under/overflow. **/ private double hypot(double a, double b) { double r = 0; if (Math.Abs(a) > Math.Abs(b)) { r = b / a; r = Math.Abs(a) * Math.Sqrt(1 + r * r); } else if (b != 0) { r = a / b; r = Math.Abs(b) * Math.Sqrt(1 + r * r); } return r; } } }