#region License Information
/* HeuristicLab
* Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HeuristicLab.Common;
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.Operators;
using HeuristicLab.Optimization;
using HeuristicLab.Parameters;
using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
using System;
using System.Collections.Generic;
using System.Linq;
namespace HeuristicLab.Algorithms.CMAEvolutionStrategy {
[Item("CMAInitializer", "Initializes the covariance matrix and step size variables.")]
[StorableType("04958A1A-7377-49E6-A8A7-0D25DBE4F10C")]
public class CMAInitializer : SingleSuccessorOperator, ICMAInitializer, IIterationBasedOperator {
public Type CMAType {
get { return typeof(CMAParameters); }
}
#region Parameter Properties
public IValueLookupParameter DimensionParameter {
get { return (IValueLookupParameter)Parameters["Dimension"]; }
}
public IValueLookupParameter InitialSigmaParameter {
get { return (IValueLookupParameter)Parameters["InitialSigma"]; }
}
public IValueLookupParameter SigmaBoundsParameter {
get { return (IValueLookupParameter)Parameters["SigmaBounds"]; }
}
public ILookupParameter IterationsParameter {
get { return (ILookupParameter)Parameters["Iterations"]; }
}
public IValueLookupParameter MaximumIterationsParameter {
get { return (IValueLookupParameter)Parameters["MaximumIterations"]; }
}
public IValueLookupParameter InitialIterationsParameter {
get { return (IValueLookupParameter)Parameters["InitialIterations"]; }
}
public ILookupParameter PopulationSizeParameter {
get { return (ILookupParameter)Parameters["PopulationSize"]; }
}
public ILookupParameter MuParameter {
get { return (ILookupParameter)Parameters["Mu"]; }
}
public ILookupParameter StrategyParametersParameter {
get { return (ILookupParameter)Parameters["StrategyParameters"]; }
}
#endregion
[StorableConstructor]
protected CMAInitializer(bool deserializing) : base(deserializing) { }
protected CMAInitializer(CMAInitializer original, Cloner cloner) : base(original, cloner) { }
public CMAInitializer()
: base() {
Parameters.Add(new ValueLookupParameter("Dimension", "The problem dimension (N)."));
Parameters.Add(new ValueLookupParameter("InitialSigma", "The initial value for Sigma (need to be > 0), can be single dimensioned or an array that should be equal to the size of the vector."));
Parameters.Add(new ValueLookupParameter("SigmaBounds", "The bounds for sigma value can be omitted, given as one value for all dimensions or a value for each dimension. First column specifies minimum, second column maximum value."));
Parameters.Add(new LookupParameter("Iterations", "The current iteration that is being processed."));
Parameters.Add(new ValueLookupParameter("MaximumIterations", "The maximum number of iterations to be processed."));
Parameters.Add(new ValueLookupParameter("InitialIterations", "The number of iterations that should be performed using the diagonal covariance matrix only.", new IntValue(0)));
Parameters.Add(new LookupParameter("PopulationSize", "The population size (lambda)."));
Parameters.Add(new LookupParameter("Mu", "Optional, the number of offspring considered for updating of the strategy parameters."));
Parameters.Add(new LookupParameter("StrategyParameters", "The strategy parameters for real-encoded CMA-ES."));
}
public override IDeepCloneable Clone(Cloner cloner) {
return new CMAInitializer(this, cloner);
}
public override IOperation Apply() {
var N = DimensionParameter.ActualValue.Value;
var lambda = PopulationSizeParameter.ActualValue.Value;
var mu = MuParameter.ActualValue;
var sp = new CMAParameters();
sp.Mu = mu == null ? (int)Math.Floor(lambda / 2.0) : mu.Value;
sp.QualityHistorySize = 10 + 30 * N / lambda;
sp.QualityHistory = new Queue(sp.QualityHistorySize + 1);
var s = InitialSigmaParameter.ActualValue;
if (s == null || s.Length == 0) throw new InvalidOperationException("Initial standard deviation (sigma) must be given.");
var sigma = s.Max();
if (sigma <= 0) throw new InvalidOperationException("Initial standard deviation (sigma) must be > 0.");
var pc = new double[N]; // evolution paths for C
var ps = new double[N]; // evolution paths for sigma
var B = new double[N, N]; // B defines the coordinate system
var D = new double[N]; // diagonal D defines the scaling
var C = new double[N, N]; // covariance matrix C
var BDz = new double[N];
double minSqrtdiagC = int.MaxValue, maxSqrtdiagC = int.MinValue;
for (int i = 0; i < N; i++) {
B[i, i] = 1;
if (s.Length == 1) D[i] = 1;
else if (s.Length == N) D[i] = s[i] / sigma;
else throw new InvalidOperationException("Initial standard deviation (sigma) must either contain only one value for all dimension or for every dimension.");
if (D[i] <= 0) throw new InvalidOperationException("Initial standard deviation (sigma) values must all be > 0.");
C[i, i] = D[i] * D[i];
if (Math.Sqrt(C[i, i]) < minSqrtdiagC) minSqrtdiagC = Math.Sqrt(C[i, i]);
if (Math.Sqrt(C[i, i]) > maxSqrtdiagC) maxSqrtdiagC = Math.Sqrt(C[i, i]);
}
// ensure maximal and minimal standard deviations
var sigmaBounds = SigmaBoundsParameter.ActualValue;
if (sigmaBounds != null && sigmaBounds.Rows > 0) {
for (int i = 0; i < N; i++) {
var d = sigmaBounds[Math.Min(i, sigmaBounds.Rows - 1), 0];
if (d > sigma * minSqrtdiagC) sigma = d / minSqrtdiagC;
}
for (int i = 0; i < N; i++) {
var d = sigmaBounds[Math.Min(i, sigmaBounds.Rows - 1), 1];
if (d > sigma * maxSqrtdiagC) sigma = d / maxSqrtdiagC;
}
}
// end ensure ...
// testAndCorrectNumerics
double fac = 1;
if (D.Max() < 1e-6)
fac = 1.0 / D.Max();
else if (D.Min() > 1e4)
fac = 1.0 / D.Min();
if (fac != 1.0) {
sigma /= fac;
for (int i = 0; i < N; i++) {
pc[i] *= fac;
D[i] *= fac;
for (int j = 0; j < N; j++)
C[i, j] *= fac * fac;
}
}
// end testAndCorrectNumerics
var initialIterations = InitialIterationsParameter.ActualValue;
if (initialIterations == null) {
initialIterations = new IntValue(0);
}
double maxD = D.Max(), minD = D.Min();
if (minD == 0) sp.AxisRatio = double.PositiveInfinity;
else sp.AxisRatio = maxD / minD;
sp.PC = pc;
sp.PS = ps;
sp.B = B;
sp.D = D;
sp.C = C;
sp.BDz = BDz;
sp.Sigma = sigma;
if (sigmaBounds != null) {
sp.SigmaBounds = new double[sigmaBounds.Rows, sigmaBounds.Columns];
for (int i = 0; i < sigmaBounds.Rows; i++)
for (int j = 0; j < sigmaBounds.Columns; j++)
sp.SigmaBounds[i, j] = sigmaBounds[i, j];
}
sp.InitialIterations = initialIterations.Value;
StrategyParametersParameter.ActualValue = sp;
return base.Apply();
}
}
}