#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Linq; using System.Text; using HeuristicLab.Core; using HeuristicLab.Common; using HeuristicLab.Data; using HeuristicLab.DataAnalysis; using HeuristicLab.Modeling; using HeuristicLab.GP; using HeuristicLab.GP.StructureIdentification; using HeuristicLab.GP.Interfaces; namespace HeuristicLab.LinearRegression { public class LinearRegressionOperator : OperatorBase { private static double constant = 1.0; public LinearRegressionOperator() { AddVariableInfo(new VariableInfo("TargetVariable", "Name of the target variable", typeof(StringData), VariableKind.In)); AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In)); AddVariableInfo(new VariableInfo("SamplesStart", "Start index of samples in dataset to evaluate", typeof(IntData), VariableKind.In)); AddVariableInfo(new VariableInfo("SamplesEnd", "End index of samples in dataset to evaluate", typeof(IntData), VariableKind.In)); AddVariableInfo(new VariableInfo("MaxTimeOffset", "(optional) Maximal time offset for time-series prognosis", typeof(IntData), VariableKind.In)); AddVariableInfo(new VariableInfo("MinTimeOffset", "(optional) Minimal time offset for time-series prognosis", typeof(IntData), VariableKind.In)); AddVariableInfo(new VariableInfo("LinearRegressionModel", "Formula that was calculated by linear regression", typeof(IGeneticProgrammingModel), VariableKind.Out | VariableKind.New)); } public override IOperation Apply(IScope scope) { Dataset dataset = GetVariableValue("Dataset", scope, true); string targetVariable = GetVariableValue("TargetVariable", scope, true).Data; int targetVariableIndex = dataset.GetVariableIndex(targetVariable); int start = GetVariableValue("SamplesStart", scope, true).Data; int end = GetVariableValue("SamplesEnd", scope, true).Data; IntData maxTimeOffsetData = GetVariableValue("MaxTimeOffset", scope, true, false); int maxTimeOffset = maxTimeOffsetData == null ? 0 : maxTimeOffsetData.Data; IntData minTimeOffsetData = GetVariableValue("MinTimeOffset", scope, true, false); int minTimeOffset = minTimeOffsetData == null ? 0 : minTimeOffsetData.Data; List allowedColumns = CalculateAllowedColumns(dataset, targetVariableIndex, start, end); List allowedRows = CalculateAllowedRows(dataset, targetVariableIndex, allowedColumns, start, end, minTimeOffset, maxTimeOffset); double[,] inputMatrix = PrepareInputMatrix(dataset, allowedColumns, allowedRows, minTimeOffset, maxTimeOffset); double[] targetVector = PrepareTargetVector(dataset, targetVariableIndex, allowedRows); double[] coefficients = CalculateCoefficients(inputMatrix, targetVector); IFunctionTree tree = CreateModel(coefficients, allowedColumns.Select(i => dataset.GetVariableName(i)).ToList(), minTimeOffset, maxTimeOffset); scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("LinearRegressionModel"), new GeneticProgrammingModel(tree))); return null; } private IFunctionTree CreateModel(double[] coefficients, List allowedVariables, int minTimeOffset, int maxTimeOffset) { IFunctionTree root = new Addition().GetTreeNode(); IFunctionTree actNode = root; int timeOffsetRange = (maxTimeOffset - minTimeOffset + 1); Queue nodes = new Queue(); for (int i = 0; i < allowedVariables.Count; i++) { for (int timeOffset = minTimeOffset; timeOffset <= maxTimeOffset; timeOffset++) { var vNode = (VariableFunctionTree)new GP.StructureIdentification.Variable().GetTreeNode(); vNode.VariableName = allowedVariables[i]; vNode.Weight = coefficients[(i * timeOffsetRange) + (timeOffset - minTimeOffset)]; vNode.SampleOffset = timeOffset; nodes.Enqueue(vNode); } } var cNode = (ConstantFunctionTree)new Constant().GetTreeNode(); cNode.Value = coefficients[coefficients.Length - 1]; nodes.Enqueue(cNode); IFunctionTree newTree; while (nodes.Count != 1) { newTree = new Addition().GetTreeNode(); newTree.AddSubTree(nodes.Dequeue()); newTree.AddSubTree(nodes.Dequeue()); nodes.Enqueue(newTree); } return nodes.Dequeue(); } private double[] CalculateCoefficients(double[,] inputMatrix, double[] targetVector) { int retVal = 0; alglib.linreg.linearmodel lm = new alglib.linreg.linearmodel(); alglib.linreg.lrreport ar = new alglib.linreg.lrreport(); int n = targetVector.Length; int p = inputMatrix.GetLength(1); double[,] dataset = new double[n, p]; for (int row = 0; row < n; row++) { for (int column = 0; column < p-1; column++) { dataset[row, column] = inputMatrix[row, column]; } dataset[row, p-1] = targetVector[row]; } alglib.linreg.lrbuild(ref dataset, n, p-1, ref retVal, ref lm, ref ar); if (retVal != 1) throw new ArgumentException("Error in calculation of linear regression model"); Console.Out.WriteLine("ALGLIB Linear Regression: Estimated generalization RMS = {0}", ar.cvrmserror); double[] coefficients = new double[p]; for (int i = 0; i < p; i++) { coefficients[i] = lm.w[i+4]; } return coefficients; } //returns list of valid row indexes (rows without NaN values) private List CalculateAllowedRows(Dataset dataset, int targetVariable, IList allowedColumns, int start, int end, int minTimeOffset, int maxTimeOffset) { List allowedRows = new List(); bool add; for (int row = start; row < end; row++) { add = true; for (int colIndex = 0; colIndex < allowedColumns.Count && add == true; colIndex++) { for (int timeOffset = minTimeOffset; timeOffset <= maxTimeOffset; timeOffset++) { if ( row + timeOffset < 0 || row + timeOffset > dataset.Rows || double.IsNaN(dataset.GetValue(row + timeOffset, allowedColumns[colIndex])) || double.IsInfinity(dataset.GetValue(row + timeOffset, allowedColumns[colIndex])) || double.IsNaN(dataset.GetValue(row + timeOffset, targetVariable))) { add = false; } } } if (add) allowedRows.Add(row); add = true; } return allowedRows; } //returns list of valid column indexes (columns which contain max. 10% NaN (or infinity) and contain at least two different values) private List CalculateAllowedColumns(Dataset dataset, int targetVariable, int start, int end) { List allowedColumns = new List(); double n = end - start; for (int i = 0; i < dataset.Columns; i++) { double nanRatio = dataset.CountMissingValues(i, start, end) / n; if (i != targetVariable && nanRatio < 0.1 && dataset.GetRange(i, start, end) > 0.0) { allowedColumns.Add(i); } } return allowedColumns; } private double[,] PrepareInputMatrix(Dataset dataset, List allowedColumns, List allowedRows, int minTimeOffset, int maxTimeOffset) { int rowCount = allowedRows.Count; int timeOffsetRange = (maxTimeOffset - minTimeOffset + 1); double[,] matrix = new double[rowCount, (allowedColumns.Count * timeOffsetRange) + 1]; for (int row = 0; row < allowedRows.Count; row++) for (int col = 0; col < allowedColumns.Count; col++) { for (int timeOffset = minTimeOffset; timeOffset <= maxTimeOffset; timeOffset++) matrix[row, (col * timeOffsetRange) + (timeOffset - minTimeOffset)] = dataset.GetValue(allowedRows[row] + timeOffset, allowedColumns[col]); } //add constant 1.0 in last column for (int i = 0; i < rowCount; i++) matrix[i, allowedColumns.Count * timeOffsetRange] = constant; return matrix; } private double[] PrepareTargetVector(Dataset dataset, int targetVariable, List allowedRows) { int rowCount = allowedRows.Count; double[] targetVector = new double[rowCount]; double[] samples = dataset.Samples; for (int row = 0; row < rowCount; row++) { targetVector[row] = dataset.GetValue(allowedRows[row], targetVariable); } return targetVector; } } }