#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HeuristicLab.GP.StructureIdentification;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using HeuristicLab.DataAnalysis;
using System;
using HeuristicLab.GP.Interfaces;
using HeuristicLab.Random;
using HeuristicLab.GP.Operators;
using System.Collections.Generic;
using System.Text;
using System.Diagnostics;
namespace HeuristicLab.GP.Test {
public class Util {
public static void InitTree(IFunctionTree tree, MersenneTwister twister, List varNames) {
foreach (var node in FunctionTreeIterator.IteratePostfix(tree)) {
if (node is VariableFunctionTree) {
var varNode = node as VariableFunctionTree;
varNode.Weight = twister.NextDouble() * 20.0 - 10.0;
varNode.SampleOffset = 0;
varNode.VariableName = varNames[twister.Next(varNames.Count)];
} else if (node is ConstantFunctionTree) {
var constantNode = node as ConstantFunctionTree;
constantNode.Value = twister.NextDouble() * 20.0 - 10.0;
}
}
}
public static FunctionLibrary CreateFunctionLibrary() {
FunctionLibrary functionLibrary = new FunctionLibrary();
Variable variable = new Variable();
Constant constant = new Constant();
Differential differential = new Differential();
Addition addition = new Addition();
And and = new And();
//Average average = new Average();
Cosinus cosinus = new Cosinus();
Division division = new Division();
Equal equal = new Equal();
Exponential exponential = new Exponential();
GreaterThan greaterThan = new GreaterThan();
IfThenElse ifThenElse = new IfThenElse();
LessThan lessThan = new LessThan();
Logarithm logarithm = new Logarithm();
Multiplication multiplication = new Multiplication();
Not not = new Not();
Or or = new Or();
Power power = new Power();
Signum signum = new Signum();
Sinus sinus = new Sinus();
Sqrt sqrt = new Sqrt();
Subtraction subtraction = new Subtraction();
Tangens tangens = new Tangens();
Xor xor = new Xor();
List booleanFunctions = new List();
booleanFunctions.Add(and);
booleanFunctions.Add(equal);
booleanFunctions.Add(greaterThan);
booleanFunctions.Add(lessThan);
booleanFunctions.Add(not);
booleanFunctions.Add(or);
booleanFunctions.Add(xor);
List doubleFunctions = new List();
doubleFunctions.Add(differential);
doubleFunctions.Add(variable);
doubleFunctions.Add(constant);
doubleFunctions.Add(addition);
// doubleFunctions.Add(average);
doubleFunctions.Add(cosinus);
doubleFunctions.Add(division);
doubleFunctions.Add(exponential);
doubleFunctions.Add(ifThenElse);
doubleFunctions.Add(logarithm);
doubleFunctions.Add(multiplication);
doubleFunctions.Add(power);
doubleFunctions.Add(signum);
doubleFunctions.Add(sinus);
doubleFunctions.Add(sqrt);
doubleFunctions.Add(subtraction);
doubleFunctions.Add(tangens);
SetAllowedSubOperators(and, booleanFunctions);
SetAllowedSubOperators(equal, doubleFunctions);
SetAllowedSubOperators(greaterThan, doubleFunctions);
SetAllowedSubOperators(lessThan, doubleFunctions);
SetAllowedSubOperators(not, booleanFunctions);
SetAllowedSubOperators(or, booleanFunctions);
SetAllowedSubOperators(xor, booleanFunctions);
SetAllowedSubOperators(addition, doubleFunctions);
//SetAllowedSubOperators(average, doubleFunctions);
SetAllowedSubOperators(cosinus, doubleFunctions);
SetAllowedSubOperators(division, doubleFunctions);
SetAllowedSubOperators(exponential, doubleFunctions);
SetAllowedSubOperators(ifThenElse, 0, booleanFunctions);
SetAllowedSubOperators(ifThenElse, 1, doubleFunctions);
SetAllowedSubOperators(ifThenElse, 2, doubleFunctions);
SetAllowedSubOperators(logarithm, doubleFunctions);
SetAllowedSubOperators(multiplication, doubleFunctions);
SetAllowedSubOperators(power, doubleFunctions);
SetAllowedSubOperators(signum, doubleFunctions);
SetAllowedSubOperators(sinus, doubleFunctions);
SetAllowedSubOperators(sqrt, doubleFunctions);
SetAllowedSubOperators(subtraction, doubleFunctions);
SetAllowedSubOperators(tangens, doubleFunctions);
functionLibrary.AddFunction(differential);
functionLibrary.AddFunction(variable);
functionLibrary.AddFunction(constant);
functionLibrary.AddFunction(addition);
// functionLibrary.AddFunction(average);
functionLibrary.AddFunction(and);
functionLibrary.AddFunction(cosinus);
functionLibrary.AddFunction(division);
functionLibrary.AddFunction(equal);
functionLibrary.AddFunction(exponential);
functionLibrary.AddFunction(greaterThan);
functionLibrary.AddFunction(ifThenElse);
functionLibrary.AddFunction(lessThan);
functionLibrary.AddFunction(logarithm);
functionLibrary.AddFunction(multiplication);
functionLibrary.AddFunction(not);
functionLibrary.AddFunction(power);
functionLibrary.AddFunction(or);
functionLibrary.AddFunction(signum);
functionLibrary.AddFunction(sinus);
functionLibrary.AddFunction(sqrt);
functionLibrary.AddFunction(subtraction);
functionLibrary.AddFunction(tangens);
functionLibrary.AddFunction(xor);
variable.SetConstraints(0, 0);
differential.SetConstraints(0, 0);
return functionLibrary;
}
private static void SetAllowedSubOperators(IFunction f, IEnumerable gs) {
for (int i = 0; i < f.MaxSubTrees; i++) {
SetAllowedSubOperators(f, i, gs);
}
}
private static void SetAllowedSubOperators(IFunction f, int i, IEnumerable gs) {
foreach (var g in gs) {
f.AddAllowedSubFunction(g, i);
}
}
public static IFunctionTree[] CreateRandomTrees(MersenneTwister twister, Dataset dataset, int popSize) {
return CreateRandomTrees(twister, dataset, popSize, 1, 200);
}
public static IFunctionTree[] CreateRandomTrees(MersenneTwister twister, Dataset dataset, int popSize, int minSize, int maxSize) {
IFunctionTree[] randomTrees = new IFunctionTree[popSize];
FunctionLibrary funLib = Util.CreateFunctionLibrary();
for (int i = 0; i < randomTrees.Length; i++) {
randomTrees[i] = ProbabilisticTreeCreator.Create(twister, funLib, minSize, maxSize, maxSize + 1);
}
return randomTrees;
}
public static Dataset CreateRandomDataset(MersenneTwister twister, int rows, int columns) {
double[,] data = new double[rows, columns];
for (int i = 0; i < rows; i++) {
for (int j = 0; j < columns; j++) {
data[i, j] = twister.NextDouble() * 2.0 - 1.0;
}
}
Dataset ds = new Dataset(data);
ds.SetVariableName(0, "y");
return ds;
}
public static double NodesPerSecond(long nNodes, Stopwatch watch) {
return nNodes / (watch.ElapsedMilliseconds / 1000.0);
}
public static void EvaluateTrees(IFunctionTree[] trees, ITreeEvaluator evaluator, Dataset dataset, int repetitions) {
double[] estimation = new double[dataset.Rows];
// warm up
for (int i = 0; i < trees.Length; i++) {
evaluator.PrepareForEvaluation(dataset, trees[i]);
for (int row = 1; row < dataset.Rows; row++) {
estimation[row] = evaluator.Evaluate(row);
}
}
Stopwatch watch = new Stopwatch();
Stopwatch compileWatch = new Stopwatch();
long nNodes = 0;
for (int rep = 0; rep < repetitions; rep++) {
watch.Start();
for (int i = 0; i < trees.Length; i++) {
compileWatch.Start();
evaluator.PrepareForEvaluation(dataset, trees[i]);
nNodes += trees[i].GetSize() * (dataset.Rows - 1);
compileWatch.Stop();
for (int row = 1; row < dataset.Rows; row++) {
estimation[row] = evaluator.Evaluate(row);
}
}
watch.Stop();
}
Assert.Inconclusive("Random tree evaluation performance of " + evaluator.GetType() + ":" +
watch.ElapsedMilliseconds + "ms (" + compileWatch.ElapsedMilliseconds + " ms) " +
Util.NodesPerSecond(nNodes, watch) + " nodes/sec");
}
}
}