#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using System; using System.Collections.Generic; using System.Text; using System.Xml; using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.DataAnalysis; using System.Linq; using HeuristicLab.GP.Interfaces; using HeuristicLab.Modeling; namespace HeuristicLab.GP.StructureIdentification { public class NodeBasedVariableImpactCalculator : OperatorBase { public NodeBasedVariableImpactCalculator() : base() { AddVariableInfo(new VariableInfo("FunctionTree", "The GP model", typeof(IGeneticProgrammingModel), VariableKind.In)); AddVariableInfo(new VariableInfo("Dataset", "Dataset", typeof(Dataset), VariableKind.In)); AddVariableInfo(new VariableInfo("TargetVariable", "TargetVariable", typeof(StringData), VariableKind.In)); AddVariableInfo(new VariableInfo("InputVariableNames", "Names of used variables in the model (optional)", typeof(ItemList), VariableKind.In)); AddVariableInfo(new VariableInfo("SamplesStart", "SamplesStart", typeof(IntData), VariableKind.In)); AddVariableInfo(new VariableInfo("SamplesEnd", "SamplesEnd", typeof(IntData), VariableKind.In)); AddVariableInfo(new VariableInfo("TreeEvaluator", "Evaluator that should be used for impact calculation", typeof(ITreeEvaluator), VariableKind.In)); AddVariableInfo(new VariableInfo(ModelingResult.VariableNodeImpact.ToString(), "Variable impacts", typeof(ItemList), VariableKind.New | VariableKind.Out)); } public override string Description { get { return @"Calculates the impact of all allowed input variables on the quality of the model based on node impacts."; } } public override IOperation Apply(IScope scope) { IGeneticProgrammingModel gpModel = GetVariableValue("FunctionTree", scope, true); Dataset dataset = GetVariableValue("Dataset", scope, true); string targetVariableName = GetVariableValue("TargetVariable", scope, true).Data; int targetVariable = dataset.GetVariableIndex(targetVariableName); ItemList inputVariableNames = GetVariableValue>("InputVariableNames", scope, true, false); ITreeEvaluator evaluator = GetVariableValue("TreeEvaluator", scope, true); int start = GetVariableValue("SamplesStart", scope, true).Data; int end = GetVariableValue("SamplesEnd", scope, true).Data; Dictionary qualityImpacts; if (inputVariableNames == null) qualityImpacts = Calculate(dataset, evaluator, gpModel.FunctionTree, targetVariableName, start, end); else qualityImpacts = Calculate(dataset, evaluator, gpModel.FunctionTree, targetVariableName, inputVariableNames.Select(iv => iv.Data), start, end); ItemList varImpacts = GetVariableValue(ModelingResult.VariableNodeImpact.ToString(), scope, true, false); if (varImpacts == null) { varImpacts = new ItemList(); scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName(ModelingResult.VariableNodeImpact.ToString()), varImpacts)); } varImpacts.Clear(); foreach (KeyValuePair p in qualityImpacts) { if (p.Key != targetVariableName) { ItemList row = new ItemList(); row.Add(new StringData(p.Key)); row.Add(new DoubleData(p.Value)); varImpacts.Add(row); } } return null; } public static Dictionary Calculate(Dataset dataset, ITreeEvaluator evaluator, IFunctionTree tree, string targetVariableName, int start, int end) { return Calculate(dataset, evaluator, tree, targetVariableName, null, start, end); } public static Dictionary Calculate(Dataset dataset, ITreeEvaluator evaluator, IFunctionTree tree, string targetVariableName, IEnumerable inputVariableNames, int start, int end) { Dictionary impacts = new Dictionary(); Dictionary nodeImpacts = new Dictionary(); Dictionary nodeReplacementValues = new Dictionary(); Dictionary parent = new Dictionary(); int targetVariable = dataset.GetVariableIndex(targetVariableName); IEnumerable variables; if (inputVariableNames != null) variables = inputVariableNames; else variables = dataset.VariableNames; parent[tree] = null; foreach (var node in FunctionTreeIterator.IteratePostfix(tree)) { foreach (var subTree in node.SubTrees) { parent[subTree] = node; } nodeReplacementValues[node] = CalculateReplacementValue(dataset, evaluator, node, targetVariable, start, end); } double originalMse = CalculateMSE(dataset, evaluator, tree, targetVariable, start, end); foreach (var node in FunctionTreeIterator.IteratePostfix(tree)) { IFunctionTree newTree = ReplaceBranchInTree(tree, node, nodeReplacementValues[node]); double newMse = CalculateMSE(dataset, evaluator, newTree, targetVariable, start, end); nodeImpacts[node] = newMse / originalMse; } foreach (string variableName in variables) { var matchingNodes = from node in nodeImpacts.Keys where node is VariableFunctionTree && ((VariableFunctionTree)node).VariableName == variableName select node; double maxImpact; if (matchingNodes.Count() > 0) { maxImpact = (from matchingNode in matchingNodes select (from n in AncestorList(matchingNode, parent) select nodeImpacts[n]).Min()).Max(); } else { maxImpact = 1.0; } impacts[variableName] = maxImpact; } return impacts; } private static double CalculateMSE(Dataset dataset, ITreeEvaluator evaluator, IFunctionTree tree, int targetVariable, int start, int end) { double[,] values = new double[end - start, 2]; evaluator.PrepareForEvaluation(dataset, tree); for (int i = start; i < end; i++) { values[i - start, 0] = dataset.GetValue(i, targetVariable); values[i - start, 1] = evaluator.Evaluate(i); } return SimpleMSEEvaluator.Calculate(values); } private static IEnumerable AncestorList(IFunctionTree node, Dictionary parent) { while (node != null) { yield return node; node = parent[node]; } } private static double CalculateReplacementValue(Dataset dataset, ITreeEvaluator evaluator, IFunctionTree tree, int targetVariable, int start, int end) { double[] values = new double[end - start]; evaluator.PrepareForEvaluation(dataset, tree); for (int i = start; i < end; i++) { values[i - start] = evaluator.Evaluate(i); } return Statistics.Median(values); } private static IFunctionTree ReplaceBranchInTree(IFunctionTree tree, IFunctionTree node, double p) { if (tree == node) return CreateConstantNode(p); List originalSubTrees = new List(tree.SubTrees); while (tree.SubTrees.Count > 0) tree.RemoveSubTree(0); IFunctionTree clonedNode = (IFunctionTree)tree.Clone(); for (int i = 0; i < originalSubTrees.Count; i++) { tree.AddSubTree(originalSubTrees[i]); clonedNode.AddSubTree(ReplaceBranchInTree(originalSubTrees[i], node, p)); } return clonedNode; } private static IFunctionTree CreateConstantNode(double value) { ConstantFunctionTree constantTree = (ConstantFunctionTree)(new Constant().GetTreeNode()); constantTree.Value = value; return (IFunctionTree)constantTree; } } }