#region License Information
/* HeuristicLab
* Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
*
* This file is part of HeuristicLab.
*
* HeuristicLab is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* HeuristicLab is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with HeuristicLab. If not, see .
*/
#endregion
using HeuristicLab.Core;
using HeuristicLab.Data;
using HeuristicLab.DataAnalysis;
using HeuristicLab.GP.Interfaces;
namespace HeuristicLab.GP.StructureIdentification {
public abstract class GPEvaluatorBase : OperatorBase {
public GPEvaluatorBase()
: base() {
AddVariableInfo(new VariableInfo("TreeEvaluator", "The evaluator that should be used to evaluate the expression tree", typeof(ITreeEvaluator), VariableKind.In));
AddVariableInfo(new VariableInfo("FunctionTree", "The function tree that should be evaluated", typeof(IGeneticProgrammingModel), VariableKind.In));
AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In));
AddVariableInfo(new VariableInfo("TargetVariable", "Name of the target variable", typeof(StringData), VariableKind.In));
AddVariableInfo(new VariableInfo("TotalEvaluatedNodes", "Number of evaluated nodes", typeof(DoubleData), VariableKind.In | VariableKind.Out));
AddVariableInfo(new VariableInfo("SamplesStart", "Start index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
AddVariableInfo(new VariableInfo("SamplesEnd", "End index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
AddVariableInfo(new VariableInfo("UseEstimatedTargetValue", "(optional) Wether to use the original (measured) or the estimated (calculated) value for the target variable for autoregressive modelling", typeof(BoolData), VariableKind.In));
}
public override IOperation Apply(IScope scope) {
// get all variable values
Dataset dataset = GetVariableValue("Dataset", scope, true);
int targetVariable = dataset.GetVariableIndex(GetVariableValue("TargetVariable", scope, true).Data);
IGeneticProgrammingModel gpModel = GetVariableValue("FunctionTree", scope, true);
double totalEvaluatedNodes = scope.GetVariableValue("TotalEvaluatedNodes", true).Data;
int start = GetVariableValue("SamplesStart", scope, true).Data;
int end = GetVariableValue("SamplesEnd", scope, true).Data;
BoolData useEstimatedValuesData = GetVariableValue("UseEstimatedTargetValue", scope, true, false);
bool useEstimatedValues = useEstimatedValuesData == null ? false : useEstimatedValuesData.Data;
ITreeEvaluator evaluator = GetVariableValue("TreeEvaluator", scope, true);
evaluator.PrepareForEvaluation(dataset, gpModel.FunctionTree);
double[] backupValues = null;
// prepare for autoregressive modelling by saving the original values of the target-variable to a backup array
if (useEstimatedValues &&
(backupValues == null || backupValues.Length != end - start)) {
backupValues = new double[end - start];
for (int i = start; i < end; i++) {
backupValues[i - start] = dataset.GetValue(i, targetVariable);
}
}
dataset.FireChangeEvents = false;
Evaluate(scope, evaluator, dataset, targetVariable, start, end, useEstimatedValues);
// restore the values of the target variable from the backup array if necessary
if (useEstimatedValues) {
for (int i = start; i < end; i++) {
dataset.SetValue(i, targetVariable, backupValues[i - start]);
}
}
dataset.FireChangeEvents = true;
dataset.FireChanged();
// update the value of total evaluated nodes
scope.GetVariableValue("TotalEvaluatedNodes", true).Data = totalEvaluatedNodes + gpModel.Size * (end - start);
return null;
}
public abstract void Evaluate(IScope scope, ITreeEvaluator evaluator, Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues);
}
}