#region License Information /* HeuristicLab * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL) * * This file is part of HeuristicLab. * * HeuristicLab is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * HeuristicLab is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HeuristicLab. If not, see . */ #endregion using HeuristicLab.Core; using HeuristicLab.Data; using HeuristicLab.DataAnalysis; using HeuristicLab.GP.Interfaces; namespace HeuristicLab.GP.StructureIdentification { public abstract class GPEvaluatorBase : OperatorBase { public GPEvaluatorBase() : base() { AddVariableInfo(new VariableInfo("TreeEvaluator", "The evaluator that should be used to evaluate the expression tree", typeof(ITreeEvaluator), VariableKind.In)); AddVariableInfo(new VariableInfo("FunctionTree", "The function tree that should be evaluated", typeof(IGeneticProgrammingModel), VariableKind.In)); AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In)); AddVariableInfo(new VariableInfo("TargetVariable", "Name of the target variable", typeof(StringData), VariableKind.In)); AddVariableInfo(new VariableInfo("TotalEvaluatedNodes", "Number of evaluated nodes", typeof(DoubleData), VariableKind.In | VariableKind.Out)); AddVariableInfo(new VariableInfo("SamplesStart", "Start index of samples in dataset to evaluate", typeof(IntData), VariableKind.In)); AddVariableInfo(new VariableInfo("SamplesEnd", "End index of samples in dataset to evaluate", typeof(IntData), VariableKind.In)); AddVariableInfo(new VariableInfo("UseEstimatedTargetValue", "(optional) Wether to use the original (measured) or the estimated (calculated) value for the target variable for autoregressive modelling", typeof(BoolData), VariableKind.In)); } public override IOperation Apply(IScope scope) { // get all variable values Dataset dataset = GetVariableValue("Dataset", scope, true); int targetVariable = dataset.GetVariableIndex(GetVariableValue("TargetVariable", scope, true).Data); IGeneticProgrammingModel gpModel = GetVariableValue("FunctionTree", scope, true); double totalEvaluatedNodes = scope.GetVariableValue("TotalEvaluatedNodes", true).Data; int start = GetVariableValue("SamplesStart", scope, true).Data; int end = GetVariableValue("SamplesEnd", scope, true).Data; BoolData useEstimatedValuesData = GetVariableValue("UseEstimatedTargetValue", scope, true, false); bool useEstimatedValues = useEstimatedValuesData == null ? false : useEstimatedValuesData.Data; ITreeEvaluator evaluator = GetVariableValue("TreeEvaluator", scope, true); evaluator.PrepareForEvaluation(dataset, gpModel.FunctionTree); double[] backupValues = null; // prepare for autoregressive modelling by saving the original values of the target-variable to a backup array if (useEstimatedValues && (backupValues == null || backupValues.Length != end - start)) { backupValues = new double[end - start]; for (int i = start; i < end; i++) { backupValues[i - start] = dataset.GetValue(i, targetVariable); } } dataset.FireChangeEvents = false; Evaluate(scope, evaluator, dataset, targetVariable, start, end, useEstimatedValues); // restore the values of the target variable from the backup array if necessary if (useEstimatedValues) { for (int i = start; i < end; i++) { dataset.SetValue(i, targetVariable, backupValues[i - start]); } } dataset.FireChangeEvents = true; dataset.FireChanged(); // update the value of total evaluated nodes scope.GetVariableValue("TotalEvaluatedNodes", true).Data = totalEvaluatedNodes + gpModel.Size * (end - start); return null; } public abstract void Evaluate(IScope scope, ITreeEvaluator evaluator, Dataset dataset, int targetVariable, int start, int end, bool updateTargetValues); } }